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Journal of
Applied

Mechanics Preface

S p e c i a l I s s u e o n A d v a n c e s i n I m p a c t E n g i n e e r i n g

It is now established that computational tools are indispensable
to augment experimental techniques for the analysis of complex
structures under dynamic loading. Many new computational tech-
niques are currently being developed and new applications in the
fields of impact and shock loadings are emerging. In this special
issue of Journal of Applied Mechanics, we have assembled a num-
ber of recent studies in the field of impact engineering. The
present issue attempts to provide a glimpse into the wide range of
engineering problems in the field of Impact Engineering that
mainly can be dealt with by employing computational techniques.
A brief overview of each article published in this special issue is
provided here.

In “Dynamic Fracture of Shells Subjected to Impulsive Loads,”
Song and Belytschko present a novel numerical model based on
the extended finite element method for the simulation of dynamic
cracks in thin shells. The capability of the proposed model is
demonstrated by comparing the numerical results with the elasto-
plastic crack propagation experiments involving quasi-brittle
fracture.

In “Fluid-Structure and Shock-Bubble Interaction Effects Dur-
ing Underwater Explosions Near Composite Structures,” Young et
al. investigate the role of fluid-structure interaction and shock-
bubble interaction in the response of composite structures during
underwater explosions using a 2D Eulerian–Lagrangian numerical
method. A systematic study is carried out to highlight the effect of
Taylor’s FSI, the bending/stretching deformation, the core com-
pression, and the boundary condition, on the response of compos-
ite structures.

In “Finite Element Analysis of Plugging in Steel Plates Struck
by Blunt Projectiles,” Kane et al. investigate the fracture of vari-
ous steel structures impacted by blunt projectiles using the explicit
solver of a non-linear finite element code, which incorporates a
thermoelastic-thermoviscoplastic constitutive model with coupled
or uncoupled ductile damage.

In “The Crushing Characteristics of Square Tubes With Blast-
Induced Imperfections: Part 1—Experiments” and “The Crushing
Characteristics of Square Tubes With Blast-Induced Imperfec-
tions: Part II—Numerical Simulations,” Yuen and Nurick study
the crushing characteristics of square tubes, with blast-induced
imperfections, subjected to axial load. In the experimental part of
the study, different imperfection types are created on opposite
sides at mid-length of a square tube by means of localized blast
loads. In the numerical part, the response of tubes with imperfec-
tion is modeled under dynamic axial loading using the finite ele-
ment method. The work provides insight into the role of imper-
fection on energy absorption characteristics and deformation
mechanisms of the tube.

In “Computational Modelling of Damage Development in
Composite Laminates Subjected to Transverse Dynamic Load-
ing,” Forghani and Vaziri present a robust computational model
for the response of composite laminates to high intensity trans-
verse dynamic loading using a cohesive type tie-break interface
for modeling delamination. The proposed model also simulates
intra-laminar damage mechanisms within the sub-laminates in a

smeared manner using a strain-softening plastic-damage model.
The validity of the developed model is assessed by comparing the
results with experiments and its capabilities are highlighted by
providing several numerical examples.

In “The Influence of Material Properties and Confinement on
the Dynamic Penetration of Alumina by Hard Spheres,” Wei et al.
study the roles of plasticity and micro-cracking on penetration
resistance of alumina using the computational protocol devised by
Deshpande and Evans. The results provide significant insight
into the behavior of alumina and new avenues for building struc-
tures and materials for applications that require high penetration
resistance.

In “Integrated Experimental, Atomistic, and Microstructurally-
Based Finite-Element Investigation of the Dynamic Compressive
Behavior of 2139 Aluminum,” Elkhodary et al. study the micro-
structural mechanisms related to the high strength and ductile be-
havior of 2139-Al using three interrelated approaches. In the com-
putational part, a specialized microstructurally-based finite-
element analysis and a dislocation-density based multiple-slip
formulation are conducted. The numerical simulations and experi-
mental observations provide fundamental insight into the micro-
structural mechanisms of shear strain localization in 2139-Al be-
havior due to dynamic compressive loads.

In “Energy and Momentum Transfer in Air Shocks,” Hutchin-
son presents a series of one-dimensional studies to reveal basic
aspects of momentum and energy transfer to plates in air blasts. A
simple conjecture, backed by numerical simulations, is put for-
ward related to the momentum transmitted to massive plates and
dimensionless parameters are selected to highlight the most im-
portant groups of parameters that govern the energy and momen-
tum transfer in air shocks.
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Comparison and Validation of
Two Models of Netting
Deformation
The predictions of two numerical models of the deformation of fishing netting are com-
pared. Analytical solutions are found to the differential equations that govern one of these
models, and these solutions are used to evaluate the accuracy of both. There is very good
agreement between the numerical solutions and the corresponding analytical values. The
models are also applied to the deformation of networks where there is an in-plane shear
resistance. Although there are no analytical solutions available, the similarity of the
numerical solutions gives confidence in both methods. �DOI: 10.1115/1.3112737�

1 Introduction
In recent years a number of numerical models of the deforma-

tion of fishing netting have been developed and applied to the
design of fishing gears �Fig. 1� and fish farming cages. These can
be broadly categorized as either lumped mass models �1–4�, linear
finite element models �5–8�, or triangular finite element models
�9�. Although developed independently, these models can be
viewed as numerical counterparts of the general theories of “pure”
networks. Steigmann and Pipkin �10� reviewed the theories of
networks formed by two families of twines. For networks where
the twines are fixed at their point of intersection they define pure
networks to be those where there is no resistance to change in the
angle between twines and “reinforced” networks to be those
where there is some shear resistance. Rivlin �11� and Kuznetsov
�12,13� developed theories of the large scale deformation of pure
networks where the twines are inextensible, and Pipkin �14� ex-
amined reinforced networks. O’Neill �15� derived equations gov-
erning the deformation of pure axisymmetric networks �Fig. 2�
and extends these to include rigid networks in Ref. �16�.

While the convergence of the above numerical models will pre-
sumably have been tested during their development, investigations
of their accuracy have been limited to comparing their predictions
with data collected experimentally in flume or towing tanks or
during full scale trials at sea. Consequently there can be experi-
mental measurement error and errors due to inaccurate modeling
of the hydrodynamic and mechanical forces acting on the netting.
Often, the accuracy and convergence of numerical models are
verified using simplified problems for which analytical solutions
are available. In this paper, we find two such analytic solutions
using the differential equations of Ref. �15�. The first of these, the
tractrix, is a complete solution to the problem of inextensible dia-
mond mesh netting held under tension between two circular rings.
The second is an upper bound on the maximum radius of inexten-
sible diamond mesh netting subject to a constant internal pressure.
These analytical solutions can be used to test the accuracy of any
of the models cited above assuming appropriate descriptions of
the forces acting on the netting are used.

Here, we compare the predictions of the models of O’Neill �15�
and Priour �9� with these analytical solutions. These two models
are very different in both derivation and structure. That of O’Neill
uses an iterative finite difference scheme to solve the governing
set of differential equations that have been derived by considering
the limiting case of the force balance on an infinitesimal mesh

�Fig. 3�, whereas the model of Priour discretizes the netting sur-
face using triangular elements �Fig. 4�, establishes the force bal-
ance at the nodes of each element, and finds the equilibrium po-
sition of the nodes using an iterative Newton–Raphson method.

We also compare the predictions of these two models when
they are applied to reinforced networks. Increasingly, some sec-
tors of the fishing industry have begun to use thicker and stiffer
twines and the need to consider reinforced networks has become
more apparent. To deform these types of networks, the individual
twine elements �between two points of intersection� have to be
deformed. This can lead to large local curvature of the twine ele-
ments �Fig. 5�, which manifests itself as a shear resistance. De-
pending on the magnitude of the twine bending stiffness, this can
have a considerable effect on the large scale deformation of the
network. The model of O’Neill is extended in Ref. �16� to account
for this by considering the case where arbitrary membrane forces
f and g act longitudinally and transversely, in the plane of the
network surface. Having arbitrary membrane forces permits the
introduction of constitutive-type relationships between the mem-
brane forces and the in-plane deformation of the network. Priour
�17� accounted for the shear resistance by having a couple acting
between the individual twine elements.

O’Neill �18� derived an asymptotic solution for the singularly
perturbed equations that govern the deformation of a twine under
tension. Here we employ these results to describe �i� the in-plane
membrane forces and �ii� the bending couple, and use the models
of O’Neill �15� and Priour �9� to investigate the influence of twine
bending stiffness on the deformation of fishing netting.

2 Equations Governing The Deformation of Axisym-
metric Networks

Let the x-axis be the axis of symmetry, y be the vertical �and
radial� distance from the x-axis to the netting, and a be the dis-
tance along the profile �Fig. 2�. O’Neill �16� showed that the equa-
tions governing the geometry of an axisymmetric diamond mesh
network subject to a constant pressure force P acting normally to
the netting surface are

d2y

da2 =
2�

��2N2M2 − 4�2y2�1 − � dy

da
�2�g�a�

f�a�

−
2�yP

Nf�a�
�1 − � dy

da
�2�0.5

�1�

Nf
dx

da
− �y2P = const �2�
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dx

da
= �1 − � dy

da
�2�0.5

�3�

�
0

ar+1 N/r
��2N2M2 − 4�2y2

da = 1 �4�

where N is the number of meshes around the circumference, M is
twice the length of each twine element, � is a coefficient of
extension/contraction, f and g are twice the longitudinal and trans-
verse forces that act at the end of each twine element �Figs. 3 and
5�, and ar+1 is the value of a at the �r+1�th node �i.e., the right
hand side of the rth mesh�. These equations are fully determined if
we have additional relationships specifying mesh deformation
�characterized by y and �� in terms of f and g.

3 Analytical Solutions
The case where the netting twine is inextensible and has no

bending stiffness is considered in Ref. �15�. Under these circum-
stances the twine tensions are the only membrane forces and the
corresponding equations can be derived by setting �=1 and g / f
=tan �=2�y / �N2M2−4�2y2�0.5. The first equation above be-
comes

d2y

da2 =
4�2y

N2M2 − 4�2y2�1 − � dy

da
�2� −

2�yP

Nf�a�
�1 − � dy

da
�2�0.5

�5�
�inextensible diamond mesh netting held between two circular
rings�.

By putting P=0 we derive the equation governing inextensible
diamond mesh netting held under tension between two circular
rings. It is shown in the Appendix that this can be solved by

Fig. 1 A demersal otter trawl with the axisymmetric cod-end,
at the back of the fishing gear, magnified

Fig. 2 The coordinate system and the strip of meshes under
consideration along the profile of the axisymmetric cod-end

Fig. 3 The coordinate system and the in-plane membrane
forces acting on one of the meshes along the network profile

Fig. 4 The triangular finite elements that discretize the netting
in Priour’s model

Fig. 5 The forces and bending couple acting on a twine ele-
ment of a reinforced network
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y�a� = A cosh na + B sinh na

where n=2� / �N2M2+4�2B2−4�2A2�0.5 and A and B are deter-
mined from the boundary conditions. Kuznetsov �19� recognized
that diamond mesh netting stretched between two rings forms a
pseudosphere. Pseudospheres are surfaces of constant negative
Gaussian curvature where the Gaussian curvature of a surface is
the product of the two principle curvatures. Given that our sur-
faces are generated by revolution of y�a�, we can demonstrate
directly that they have a Gaussian curvature equal to −n2. For the
special case where A=−B the problem is that of netting attached
to a ring of radius A at the origin, which has radius 0 at infinity.
This curve is the tractrix or pursuit curve �20�. In terms of the arc
length a it is

y�a� = Ae−na

where now n=2� /NM. We show in the Appendix that we can find
a complete analytical solution to this problem and also derive

x�a� =
1

n
tanh−1�1 − n2A2e−2na −

1

n
�1 − n2A2e−2na + const �6�

t�a� =
T

2N�1 − n2A2e−2na�
�7�

where the constant in the equation for x ensures that x�0�=0, t is
the tension in an individual twine element, and T is the axial force
acting on the circular ring at the boundary. We also show that the
position of the �r+1�th point of intersection along the netting
profile is given by

ar+1 = −
1

2n
ln�1 − tanh2�nrM + tanh−1�1 − n2A2�

n2A2 � �8�

�inextensible diamond mesh netting subject to a constant internal
pressure force�.

Although we are unable to find an analytic solution to the prob-
lem of inextensible diamond mesh netting subject to a constant
internal pressure force, it is possible to determine an analytic ex-
pression for an upper bound on the maximum diameter that such
an axisymmetric network will have �21�.

In general, y will have a local maximum where dy /da=0 and
d2y /da2�0. When the pressure is positive and constant it is rea-
sonable to expect that for a given set of boundary conditions there
will be an upper bound on the maximum value y can take. Con-
sider the case where y�0�, f�0�, and the boundary slope are fixed
and there is a local maximum, ym, which due to insufficient net-
ting along the axial direction is less than the upper bound. If we
increase the number of meshes, L, along this direction, ym will
increase until it approaches its upper bound. Further increases in L
will lead to a region around xm where y approaches it maximum,
dy /da→0 and d2y /da2→0. By setting dy /da=0 and d2y /da2

=0 above we get

6�2y2 − N2M2 − 2���y0
2 −

Nf0

P
	 dx

da
	

0
� = 0 �9�

which can be solved to give

yup =�N2M2

6�2 +
y0

2

3
−

Nf0

3�P
	 dx

da
	

0
�10�

With regard to fishing gears the most important case is where y0
=0 and dy /da 
0=0 to give

yup =
NM

��6
�11�

These are the conditions that apply at the rearmost end of a trawl
gear where the netting is tied closed and where the catch accumu-
lates �Figs. 1 and 2�. Half the angle between twines can be shown

to be tan−1�2, which is the same as the result given in Ref. �13�
for the case of a pressurized woven hose with unrestrained ends.

4 Axisymmetric Networks With Twine Bending Stiff-
ness

To include the influence of twine bending stiffness in the for-
mulation of O’Neill �Eqs. �1�–�4�� we must be able to relate mesh
deformation to f and g, the in-plane membrane forces. To deform
a mesh we must deform each of the four component twines, which
we assume here are all identical and have fixed slope angles at
their points of intersection. Thus we need to be able to relate the
deformation of the twine elements to the forces acting on them. If
we assume that the bending moment of a deformed twine is pro-
portional to its curvature and that there is no twine extension then
the equations of moment equilibrium of a twine element are

EI
d�

ds
= c + vf/2 − ug/2 �12�

du

ds
= cos � �13�

dv
ds

= sin � �14�

where � is the slope angle of a twine element, u and v are local
Cartesian coordinates, s is the arc length along a twine element,
EI is the twine bending stiffness, f /2 and g /2 are the tensile
components acting at each end of the twine, and c is a counter-
acting couple �Fig. 5�. For the problem of interest here we usually
have u�0�=v�0�=0 and ��0�=��M /2�=�, say. We will also know
two of the following four quantities: u�M /2�, v�M /2�, f , and g,
and can accordingly calculate the other two and c.

These equations are singularly perturbed and are solved asymp-
totically in Ref. �18�. The form of the solution that interests us
here is the following, which expresses the position of the twine
boundary and the counteracting couple in terms of the applied
forces:

u�M/2� =
M

2
cos �o + 2M��cos�� + �o

2
� − cos �o� + O��2�

�15�

v�M/2� =
M

2
sin �o + 2M��sin�� + �o

2
� − sin �o� + O��2�

�16�

c = 2�EIt sin��o − �

2
� + O��2� �17�

where �2=4EI /NM4Pt, �o=tan−1 g / f , and here t=0.5��f2+g2�.
Mesh deformation at any point along the network can, thus, be

related to the in-plane forces f and g as follows:

y�a� =
N

�
v�M/2�

��a� =
2

M
�u2�M/2� + v2�M/2�

where the first expression is derived by dividing the network cir-
cumference by the number of meshes around the circumference
and the second from the length of the dashed line of Fig. 5. These
two expressions couple the two sets of differential equations
�1�–�4� and �12�–�14�, which together with appropriate boundary
conditions govern the geometry of an axisymmetric network of
twines with bending stiffness subject to a constant pressure force
P.
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The asymptotic solutions �15�–�17� are shown in Ref. �18� to be
very accurate for �	0.2, and such values are typical of the net-
ting materials used by the North East Atlantic demersal fleets.

5 Numerical Models

5.1 O’Neill’s Model. O’Neill �15� found numerical solutions
to a more general form of Eqs. �1�–�4� using an iterative finite
difference scheme employing three-point central differences ex-
cept at the boundaries where three-point forward and backward
differences are used. Integrations are carried out using the trap-
ezoidal rule. This approach is used below to obtain numerical
predictions to the above analytic solutions where there is no twine
bending stiffness.

To solve the cases where the twine elements have bending stiff-
ness a zero finding routine was used during each iteration to find
the g that satisfied Eq. �16� for given f and y. In the examples
presented below it has been assumed that �=0 and accordingly
the expression for the counteracting couple is

co = 2�EIt sin��o

2
�

5.2 Priour’s Model. The model of Priour �9� uses a very
different approach. This model assumes that the netting twine is
isotropic and elastic and discretizes the netting surface using con-
tiguous triangular elements. Each element is made up of a number
of meshes, which can be characterized by two parallel families of
twine. It is assumed that twines from the same family remain
parallel and consequently, for a given element, it is possible to
establish a relationship between the forces applied to each node
and its position. The final equilibrium position of the nodes is then
found using Newton–Raphson iteration.

This model is extended in Ref. �17�, using the principle of
virtual work, to account for the case where a couple, cp, acts
between each twine element. The couple is assumed to be propor-
tional to the angle between twines, �p=tan−1 v /u. In this formu-
lation the twine elements themselves do not bend and �p and �o

above are equal only in the limiting case of no bending stiffness.
If we choose the constant of proportionality to be ��EIt� then the
counteracting couple

cp = �EIt�p

which, for small �, is a good approximation to co �at the maxi-
mum mesh opening 2 sin�� /2� differs from � by only 4%� and
allows us to compare both models.

6 Numerical Predictions of Analytic Solutions

6.1 Tractrix Solution. Consider a cylindrical piece of 100
mm mesh size netting, 100 meshes in circumference and 50
meshes in length, that is attached to a circular ring of radius 1.0 m
at the origin, i.e., M =0.1 m, N=100, L=50, and A=1.0 m where
L is the number of meshes along the length of the cod-end. If we
set r=50 in Eq. �8� we get a51=4.813073 m which, from Eq. �6�,
gives a radius of 0.048599 m at this point. Hence, if we attach the
other end of the piece of netting described above to a circular ring
with this radius, the solution is a tractrix.

Figure 6 presents the solution to this problem while Table 1
displays the analytic solution at a number of equally spaced points
along the netting profile and the corresponding numerical predic-
tions of the models of both O’Neill and Priour obtained at these
points where the resolution of the numerical procedure is succes-
sively increased. It is clear that both methods provide good pre-
dictions, which are increasingly accurate as the number of nodes
is increased.

6.2 Maximum Radius of Netting Subject to a Constant In-
ternal Pressure Force. Equation �11� provides an upper bound on
the radius of a diamond mesh axisymmetric network. Hence the
maximum possible radius where M =0.1 m and N=100 is yup
=1.299495 m. As the area over which the constant pressure force
acts is increased, the maximum radius �ymax� should increase to-
ward this value �assuming there are sufficient numbers of meshes
along the length�. Figure 7 presents the solution of the case where

Fig. 6 Tractrix calculated by Priour’s model. The radii of the boundary rings are 1 m and 0.048599 m. The distance between
them is 4.6473 m. The mesh size of the netting is M=0.1 m, the number of meshes around N=100, and the number of
meshes between the rings is L=50.
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M =0.1 m, N=100, L=200, and the pressure force acts over the
first 8 m of the network profile. The horizontal line is the upper
bound on the radius.

Figure 8 contains the predictions for both models of the maxi-
mum radii as the region over which the pressure force acts on the
above network increases from 3 m to 12 m. While, both sets of
results tend toward yup, in these simulations those of O’Neill are
always less than yup whereas Priour’s oscillate around the upper
bound.

6.3 Geometry of a Diamond Mesh Cod-End With Twine
Bending Stiffness. Figure 9 contains the profile predicted by
models of O’Neill and Priour of a cod-end where y�0�=0,
y�amax�=0.5 m, M =0.1 m, N=100, L=60, �=0, and the internal
pressure acts from the left hand boundary to a=2.5 m �the bold
part of each curve�, after which there are no applied forces acting
on the network surface �the thin part of each curve�. The outer
curve is the solution for the case where the individual twine ele-
ments do not have twine bending stiffness, i.e., EI /NM4P=0. It is
not possible to demonstrate graphically any difference between
the predictions of either model.

The inner curves are the model predictions where the twine
elements have twine bending stiffness, EI=10−4 N m2, P
=100 N m−2, and EI /NM4P=10−4. In this case there is a differ-
ence between the two models. In the region of the applied forces
the difference is less than 0.5% and again cannot be seen graphi-
cally; however, in the region where the netting necks and is at its
narrowest there is about a 5% difference.

7 Discussion
There is very good agreement between the numerical solutions

of the two models examined here and the corresponding analytical
values. The accuracy of the models increases as the number of
nodes employed increases and both converge to the analytical
solutions. It may be argued that this is what would be expected of
O’Neill’s model as it is based on finding numerical solutions to
the differential equations from which the analytical solutions are

Fig. 7 The profile of a cod-end „axisymmetric network… subject to a constant internal pressure force acting over the first 8
m of the cod-end profile. The bold part of the curve identifies the region where the pressure acts. The cod-end specification
is M=0.1 m, N=100, and L=200. The horizontal line is the upper bound on the radius.

Table 1 Analytical solution of the tractrix and the corresponding predictions of the models of O’Neill and Priour for several
resolutions

No. of nodes x

O’Neill’s model

Analytic y

Priour’s model

11 21 41 81 662 298 84 32

0 1 1 1 1 1 1 1 1 1
0.403501 0.740757 0.7395 0.739173 0.739091 0.739032 0.739158 0.740672 0.749615 0.731177
0.844094 0.548568 0.546819 0.546366 0.546252 0.546168 0.546159 0.54723 0.552714 0.53157
1.303628 0.406168 0.404321 0.403846 0.403725 0.403636 0.403594 0.404185 0.407713 0.39635
1.773173 0.30068 0.298944 0.298498 0.298385 0.2983 0.298292 0.298861 0.302777 0.291388
2.248093 0.222536 0.221017 0.220627 0.220528 0.220453 0.220415 0.220829 0.223283 0.215256
2.725923 0.164639 0.163387 0.163065 0.162984 0.162922 0.162865 0.163171 0.164585 0.157114
3.205334 0.121724 0.120761 0.120515 0.120453 0.120404 0.120315 0.120615 0.121574 0.117079
3.685607 0.089886 0.089227 0.089058 0.089016 0.088983 0.088883 0.089138 0.08953 0.086114
4.166349 0.066229 0.065888 0.0658 0.065778 0.065761 0.065664 0.065867 0.065915 0.064538
4.647348 0.048599 0.048599 0.048599 0.048599 0.048599 0.048599 0.0486 0.048604 0.048601

→
Increasing accuracy

←
Increasing accuracy

Fig. 8 The maximum radius of a cod-end with M=0.1 m, N
=100, and L=200, where the pressure force acts over a range
from 3 m to 12 m. The solid line and the points are the predic-
tions of the models of O’Neill and Priour, respectively. The
dashed line is the analytical upper bound.
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derived. Nevertheless, the numerical approach has to be tested and
these results are very encouraging and give confidence in both
methods.

The similarity of the predictions of the reinforced networks is
also very encouraging, especially when one considers how differ-
ent the models are in terms of both derivation, structure, and nu-
merical methodology. O’Neill’s used iterative finite differences to
solve the governing differential equations and introduced twine
bending stiffness via a constitutive relationship between the mem-
brane forces and the in-plane deformation of the network.
Whereas, the model of Priour discretizes the netting surface using
triangular elements, establishes the force balance at the nodes of
each element, and finds the equilibrium position of the nodes us-
ing an iterative Newton–Raphson method.

The model of O’Neill converges more quickly, but this is pri-
marily due to its assumption of axisymmetry. While this makes it
less adaptable, it is still very useful and has been employed suc-
cessfully to predict the geometry of commercial cod-ends and in a
predictive model of cod-end selection to estimate the extent to
which fish are retained by a fishing gear �22�. The cod-end is the
rearmost part of a towed fishing gear; it is where fish accumulate,
from where they escape, and, to a very good approximation, axi-
symmetric �Fig. 2�.

Priour’s model can examine three-dimensional netting struc-
tures; hence it is more versatile and, in addition to cod-ends, has
been used to model the geometry of whole fishing gears �Fig. 1�
and aquaculture cages.

The two analytical solutions presented will also be very useful
to test the accuracy of the other numerical models of the defor-
mation of netting material that have been developed in recent
years. Up to now the only way to validate these models has been
to compare their predictions with experimental measurements
where there have often been difficulties associated with measure-
ment error and/or accurate specification of the problem.

Appendix
The equations governing diamond mesh netting made of inex-

tensible flexible twine stretched between two circular rings can be
found by putting P=0 in Eq. �5� to give

d2y

da2 =
4�2y

N2M2 − 4�2y2�1 − � dy

da
�2� �A1�

We can show that y�a�=A cosh na+B sinh na solves this equation
where n=2� / �N2M2+4�2B2−4�2A2�0.5 and the unknown con-

stants, A and B, are determined from the boundary conditions.
This is most easily done by first showing that this form of y solves

1 − � dy

da
�2

=
n2

4�2 �N2M2 − 4�2y2�

after which it is clear that it also solves what remains of Eq. �A1�.
From Eq. �3� we then get

dx

da
=

n

2�
�N2M2 − 4�2y2�0.5

and accordingly that the tension in each twine element is

t =
cM

n�N2M2 − 4�2y2�

where t= f /cos � and c is a constant that depends on the axial
tensile force applied to the circular rings.

For the case where A=−B, y�a�=Ae−na and the equation for
dx /da can be expressed as

dx

da
= �1 − n2A2e−2na�0.5 = �1 − n2A2e−2na�−0.5

− n2A2e−2na�1 − n2A2e−2na�−0.5

which can be integrated using standard tables of integrals �23� to
give

x�a� =
1

n
tanh−1�1 − n2A2e−2na −

1

n
�1 − n2A2e−2na + const

Similarly Eq. �4� becomes

�
0

ar+1 1

rM�1 − n2A2e−2na
da = 1

which on integration gives

ar+1 = −
1

2n
ln�1 − tanh2�nrM + tanh−1�1 − n2A2�

n2A2 �
References

�1� Lee, C.-W., Lee, J.-H., Cha, B.-J., Kim, H.-Y., and Lee, J.-H., 2005, “Physical
Modeling for Underwater Flexible Systems Dynamic Simulation,” Ocean
Eng., 32, pp. 331–347.

�2� Takagi, T., Shimizu, T., Suzuki, K., Hiraishi, T., and Yamamoto, K., 2004,

Fig. 9 The profiles predicted by models of O’Neill and Priour of a cod-end subject to a
constant internal pressure. The bold part of each curve identifies the region where the
pressure acts. The outer curve is the solution predicted by both models for the case
there is no twine bending stiffness and cannot be differentiated graphically. The inner
curves are the predictions where there is bending stiffness, which differs by about 5%
where the cod-end necks.

051001-6 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



“Validity and Layout of ‘NaLa’: A Net Configuration and Loading Analysis
System,” Fish. Res., 66, pp. 235–243.

�3� Theret, F., 1993, “Etude de l’´equilibre de surfaces r’eticul’ees plac’ees dans
un courant uniforme;application aux chalets,” Ph.D. thesis, Ecole Centrale de
Nantes, Nantes, France.

�4� Bessonneau, J. S., and Marichal, D., 1998, “Study of the Dynamics of Sub-
merged Supple Nets �Applications to Trawls�,” Ocean Eng., 25�7�, pp. 563–
583.

�5� Tsukrov, I., Eroshkin, O., Fredriksson, D. W., Swift, M. R., and Celikkol, B.,
2003, “Finite Element Modeling of Net Panels Using a Consistent Net Ele-
ment,” Ocean Eng., 30, pp. 251–270.

�6� Hu, F., Shiode, D., Wan, R., and Tokai, T., 2006, “Accuracy Evaluation of
Numerical Simulation of Mid-Water Trawl Nets,” Contributions on the Theory
of Fishing Gears and Related Marine Systems, Vol. 4, C.-W. Lee, ed., Pukyong
National University Press, Busan, Korea.

�7� Niedzwiedz, G., and Hopp, M., 1998, “Rope and Net Calculations Applied to
Problems in Marine Engineering and Fisheries Research,” Arch. Fish. Mar.
Res., 46, pp. 125–138.

�8� Le Dret, H., Priour, D., Lewandowski, R., and Chagneau, F., 2004, “Numerical
Simulation of a Cod End Net Part 1: Equilibrium in a Uniform Flow,” J. Elast.,
76�2�, pp. 139–162.

�9� Priour, D., 1999, “Calculation of Net Shapes by the Finite Element Method
With Triangular Elements,” Commun. Numer. Methods Eng., 15�10�, pp.
755–763.

�10� Steigmann, D. J., and Pipkin, A. C., 1991, “Equilibrium of Elastic Nets,”
Philos. Trans. R. Soc. London, Ser. A, 335, pp. 419–454.

�11� Rivlin, R. S., 1958, “The Deformation of a Membrane Formed by Inextensible
Cords,” Arch. Ration. Mech. Anal., 2, pp. 447–476.

�12� Kuznetsov, E. N., 1986, “Kinetoelastostatics of Axisymmetric Nets,” ASME J.
Appl. Mech., 53, pp. 891–896.

�13� Kuznetsov, E. N., 1991, Underconstrained Structural Systems, Springer, New
York.

�14� Pipkin, A. C., 1980, “Some Developments in the Theory of Inextensible Net-
works,” Q. Appl. Math., 38, pp. 343–355.

�15� O’Neill, F. G., 1997, “Differential Equations Governing the Geometry of a
Diamond Mesh Cod-End of a Trawl Net,” ASME J. Appl. Mech., 64�1�, pp.
7–14.

�16� O’Neill, F. G., 1999, “Axisymmetrical Trawl Cod-Ends Made From Netting of
Generalized Mesh Shape,” IMA J. Appl. Math., 62, pp. 245–262.

�17� Priour, D., 2001, “Introduction of Mesh Resistance to Opening in a Triangular
Element for Calculation of Nets by the Finite Element Method,” Commun.
Numer. Methods Eng., 17�4�, pp. 229–237.

�18� O’Neill, F. G., 2002, “The Bending of Twines and Fibres Under Tension,” J.
Text. Inst., Part 1, 93, pp. 1–10.

�19� Kuznetsov, E. N., 1982, “Axisymmetric Static Nets,” Int. J. Solids Struct., 18,
pp. 1103–1112.

�20� Kuznetsov, E. N., 1997, private communication.
�21� O’Neill, F. G., 2004, “The Influence of Bending Stiffness on the Deformation

of Axisymmetric Networks,” 23rd International Conference on Offshore Me-
chanics and Artic Engineering.

�22� O’Neill, F. G., and Herrmann, B., 2007, “PRESEMO—A Predictive Model of
Cod-End Selectivity–A Tool for Fisheries Managers,” ICES J. Mar. Sci., 64,
pp. 1558–1568.

�23� Gradshteyn, I. S., and Ryzhik, I. M., 1965, Table of Integrals, Series and
Products, Academic, New York.

Journal of Applied Mechanics SEPTEMBER 2009, Vol. 76 / 051001-7

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Yuning Zhang
e-mail: yuning.zhang@mail.mcgill.ca

Inna Sharf
e-mail: inna.sharf@mcgill.ca

Department of Mechanical Engineering,
McGill University,

Montreal, QC, H3A 2K6, Canada

Validation of Nonlinear
Viscoelastic Contact Force
Models for Low Speed Impact
Compliant contact force modeling has become a popular approach for contact and im-
pact dynamics simulation of multibody systems. In this area, the nonlinear viscoelastic
contact force model developed by Hunt and Crossley (1975, “Coefficient of Restitution
Interpreted as Damping in Vibroimpact,” ASME J. Appl. Mech., 42, pp. 440–445) over 2
decades ago has become a trademark with applications of the model ranging from inter-
mittent dynamics of mechanisms to engagement dynamics of helicopter rotors and imple-
mentations in commercial multibody dynamics simulators. The distinguishing feature of
this model is that it employs a nonlinear damping term to model the energy dissipation
during contact, where the damping coefficient is related to the coefficient of restitution.
Since its conception, the model prompted several investigations on how to evaluate the
damping coefficient, in turn resulting in several variations on the original Hunt–Crossley
model. In this paper, the authors aim to experimentally validate the Hunt–Crossley type
of contact force models and furthermore to compare the experimental results to the model
predictions obtained with different values of the damping coefficient. This paper reports
our findings from the sphere to flat impact experiments, conducted for a range of initial
impacting velocities using a pendulum test rig. The unique features of this investigation
are that the impact forces are deduced from the acceleration measurements of the im-
pacting body, and the experiments are conducted with specimens of different yield
strengths. The experimental forces are compared with those predicted from the contact
dynamics simulation of the experimental scenario. The experiments, in addition to gen-
erating novel impact measurements, provide a number of insights into both the study of
impact and the impact response. �DOI: 10.1115/1.3112739�

1 Introduction
Over the past several decades, important advances have been

made in the area of contact and impact dynamics modeling with
new models and solution approaches developed �1–6�. Signifi-
cantly less attention, however, has been directed toward the ex-
perimental studies of contact and more specifically to the valida-
tion of the proposed models. One approach to contact force
modeling, which has gained significant popularity, is the compli-
ant contact force model �7–11� in which the contact force between
two objects is defined explicitly as a continuous function of local
deformation and its rate. The oldest model in this category is due
to Hertz �1�, developed in the context of quasistatic contact analy-
sis of elastic bodies. Hertz’s model defines the normal contact
force as

F = kxn �1�

where k and n are the stiffness coefficient and power exponent,
respectively, computed from material and geometric properties by
using elastostatic theory. The utility of Hertz’s model is limited to
contacts involving elastic deformation and the model does not
allow for energy dissipation. In spite of the fact that Hertzian
model has been in existence for over a century, experimental vali-
dation of the force response predicted by Hertz theory is rare in
literature. The relevant references are Refs. �1,12,13�, where low-
velocity head-on impact experiments between a steel sphere and a
bar �lead in Refs. �1,12� and aluminum in Ref. �13�� are imple-
mented and good agreement is demonstrated between the experi-
mental and theoretical results.

With the view to using the compliant model for impact sce-
narios, Hunt and Crossley �2� augmented Hertz’s model with a
nonlinear viscoelastic term as follows:

F = kxn + �xnẋ �2�

To ensure that the energy dissipated during impact is consistent
with the energy loss subsumed in the coefficient of restitution e,
several researchers proposed approximate and exact relationships
between � of Eq. �2� and e �7,8,14–18�, thereby giving rise to
several types of Hunt–Crossley models. In spite of their numerous
applications �2,15,16,19,20�, an important question remains to be
answered: do the existing nonlinear models reflect the real impact
force response during impact? To the authors’ knowledge, no ex-
perimental validation of any of the Hunt–Crossley models pro-
posed to date is available. Thus, the principal objective of the
present work is to conduct an experimental impact study aiming to
validate the models of the form �2� and furthermore to compare
the experimental results to the model predictions obtained with
different values of the damping coefficient � as proposed in Refs.
�2,7,8,14–18�.

There is another aspect of contact force modeling defined by
Eq. �2� that is addressed in the present investigation. As alluded
earlier, these models apply to what is commonly referred to in
literature as “elastic”1 impacts since they preclude the possibility
of any permanent �plastic� deformation. Yet, as noted by Johnson
in Ref. �21� and discussed in Sec. 3 of this paper, even at rela-
tively small impact velocities, the stresses in the impacting region
may exceed the yield stress of the material, resulting in plastic
deformation. Therefore, another question of significant impor-

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANISM. Manuscript received February 22, 2008; final manu-
script received January 11, 2009; published online June 16, 2009. Review conducted
by Kenneth M. Liechti.

1This term is a misnomer since, in fact, energy dissipation does occur in these
impacts. However, since it is the standard terminology in the field, it is adhered to in
this paper.
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tance, which has not been addressed in literature, is as follows:
can the nonlinear viscoelastic impact models in Eq. �2� be used to
predict the force response for impacts with some plastic deforma-
tion? The relevant previous research, although not directly ad-
dressing the above question, is by Tsuji et al. �22� and Mishra
�23�, where simulations are presented with the damping term used
to account for the energy dissipated by the plastic deformation.
Johnson �21� presented a comprehensive analysis of elastic and
inelastic impacts under different conditions. For inelastic impacts
at moderate speeds and using quasistatic assumptions, Johnson
derived formulas for the coefficient of restitution, the time of plas-
tic indentation and the time of elastic rebound; we will revisit
these in Sec. 7.

In Sec. 2, a brief overview of Hunt–Crossley type of nonlinear
compliant contact force models is presented. This is followed by
the description of the experimental setup in Sec. 3. Section 4 is
devoted to the experimental procedures for the velocity and force
measurements and Sec. 5 presents the experimental results, in-
cluding the measured and postprocessed experimental data. Then
in Sec. 6, the impact simulation results using the nonlinear com-
pliant models for the experimental scenario are presented, fol-
lowed by their comparison to the experimental results in Sec. 7.

2 Compliant Contact Force Models
Much of the research based on the Hunt–Crossley nonlinear

contact force model of Eq. �2� revolved around the issue of how to
determine the damping parameter �, and more specifically, how �
can be related to the coefficient of restitution e. The resulting
methods developed to evaluate the damping coefficient can be
categorized in two groups. Those in the first category are best
described as the “energy-based” approaches, such as Hunt and
Crossley’s �2� and Lankarani and Nikravesh’s �16�, and are char-
acterized by the application of the work-energy principle in the
derivation of �. Methods in the second group directly tackle the
equation of motion based on Eq. �2� and include the approximate
solutions by Herbert and McWhannell �14�, Lee and Wang �15�,
Marhefka and Orin �7,8�, as well as the exact solution by Gonthier
et al. �17� and Zhang and Sharf �18�.

Examination of the aforementioned references reveals five dis-
tinct expressions for the damping coefficient �, which we summa-
rize in Table 1. There, � is an empirical coefficient obtained from
a linear fit of the experimental data for e as a function of impact
velocity vi, that is,

e = 1 − �vi �3�

From the analytical standpoint, all “models” for � appear reason-
able as they all generate qualitatively similar force responses.
From the practical viewpoint, the different models for � may re-
sult in significant differences in the impact responses, as illus-
trated in Ref. �18� for an impact scenario with e=0.6.

Of relevance to this paper, however, is the fact that all models
in Table 1 yield nearly identical results for impacts with coeffi-
cient of restitution close to 1. Moreover, it is for this same cat-
egory of impacts that the assumption of elastic impact, i.e., neg-
ligible permanent deformation, applies as enforced by the Hunt
and Crossley type models. These factors make the experimental
validation of different models for � a particularly difficult task.
For the experiments presented in this manuscript, two materials
were employed for the impacted flat, giving the measured coeffi-
cients of restitution in the ranges 0.95–0.97 and 0.76–0.92, re-
spectively.

3 Experimental Samples, Setup, and Instrumentation
To capture the main characteristics of impact within the con-

straints of using a relatively simple experimental test rig and in-
expensive instrumentation, our experiments make use of a steel
ball impacting the top flat of a cylindrical specimen. In this sec-
tion, the selection of the specimens and the variables measured in
the experiments are discussed, followed by the description of two
test rigs—the drop-weight tower and the pendulum test rigs—and
the instrumentation employed.

3.1 Selection of Ball and Surface Specimens. Although our
ideal experimental scenario would involve a ball impacting a mas-
sive stationary flat surface, it was not possible to accommodate a
large metal bulk within the geometric and instrumentation con-
straints of the drop-weight tower and pendulum test rigs employed
in this experimental study. Accordingly, the impacting surface
used in our experiments was comprised of a cylindrical specimen.
The height or thickness of the specimen was chosen based on the
experimental results reported in Ref. �1� where it is shown that the
coefficient of restitution for impact between steel spheres and a
glass plate converges as the plate thickness approaches 2.54 cm.
Combining this conclusion with the geometric features of our test
rigs, we chose the thickness of the specimen as h=5.08 cm.

For a given initial impact velocity, the mass and diameter of the
impacting ball directly affect the magnitude of the impact force
and therefore, these parameters were selected to produce signals
to cover the full range of the instrumentation employed in the
experiments. It is also noted that according to Hertzian theory, the
size of the ball determines the stresses produced in the impact
region.

With the above considerations, we chose the 5.08 cm diameter
chrome-steel ball and two cylindrical specimens, C1 and C2, 5.08
cm in diameter and thickness, made of steels with different yield
strength values, respectively. The material properties of our im-
pacting bodies are tabulated in Table 2 where the last column
includes the value of the contact force Fyield to initiate plastic

Table 1 Existing expressions for damping coefficient

Researchers Damping coefficient

Hunt and Crossley �2�
Marhefka and Orin �7,8� �HC = �MO =

3

2
�k

Herbert and
McWhannell �14� �HM =

6�1 − e�
��2e − 1�2 + 3�

k

vi

Lee and Wang �15� �LW =
3

4
�k

Lankarani and
Nikravesh �16� �LN =

3k�1 − e2�
4vi

Gonthier et al. �17�
Zhang and Sharf �18� k ln� �Evi + k

− �E�1 − �vi�vi + k
� − 2�Evi + ��Evi

2 = 0

Table 2 Material properties of impacting bodies

Impacting
bodies

Young’s
modulus

�GPa�
Poisson’s

ratio

Yield
strength
�MPa�

Yield
contact
force
�N�

Cylinder specimen 1,
C1 �PD613�a 213 0.29 1815 6674
Cylinder specimen 2,
C2 �4150�b 205 0.29 330 42
Ball 210 0.30 2050 -

aSpecimen C1 �PD613� is a special mold steel produced by Daido Steel �Japan� Co.
Ltd. and heat treated at Kai Lai �China� Mold Co.
bSpecimen C2 �4150� complies with ASTM designations.

051002-2 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



deformation in the specimen. An expression for the latter is given
in Ref. �24� and for the ball/massive surface contact scenario it
reduces to2

Fyield = 23.214p3R2�q1 + q2�2 �4�

where p is the smaller yield strength of the materials of the two
impacting bodies, R is the radius of the ball and the subscripted q
can be written as q= �1−�2� /E with E and � as Young’s modulus
and Poisson’s ratio of the impacting body �1 or 2�. The value of
Fyield for C2 specimen is particularly low, indicating that plastic
deformation may occur even for very small initial impacting
velocities.

Last, we take note of the time it takes for the elastic stress
waves to propagate the length of our specimens. Setting the lon-
gitudinal �bar� wave speed c0 to be an average of the values for
the ball and the two specimens, c0=5170 m /s,3 the time for the
stress pulse to traverse the length of the cylindrical specimen �or
the diameter of the ball� away from and back to the impact surface
is calculated as �21�

Twave = 2h/c0 = 1.97 � 10−5 s

For the range of impact speeds considered in our experiments, the
resulting wave propagation time constitutes 7–10% of the duration
of impact and therefore, we may expect some energy loss due to
elastic waves in the impacting bodies.

3.2 Measured Variables. The measured variables in the im-
pact experiments fall into two categories: the variables measured
for direct comparison with the model predictions and the quanti-
ties measured in order to determine the parameters required by the
model. The experimental impact force between the ball and the
surface specimen is the primary quantity required for comparison
with the contact force profiles predicted by the models of Sec. 2.
As for the model parameters, we assume that the “spring” param-
eters k and n in the Hunt–Crossley model �Eq. �2�� can be accu-
rately determined based on Hertzian theory, given the geometric
and material properties of the impacting bodies. However, the
evaluation of the damping coefficient, according to all of the mod-
els discussed in Sec. 2, requires the value of the coefficient of
restitution e �or the value of � in Eq. �3��. Thus, the initial �pre-
impact� and final �postimpact� velocity measurements are em-
ployed to determine the coefficient of restitution as per Newton’s
�kinematic� model of restitution. With the value of e in hand, we
can calculate the corresponding parameter � in Eq. �3� and the
damping coefficients as per Table 1. Accordingly, two types of
experiments are designed: �i� to measure the impact force profile
in the impact force experiments and �ii� to measure the initial and
final velocities of the ball in the coefficient of restitution experi-
ments.

3.3 Experimental Test Rigs. Majority of the experimental
impact studies reported in literature were conducted on a drop
tower �25–29� or a pendulum test rig �12,30–32�. In the experi-
mental impact study reported here, the impact force experiments
were conducted using the pendulum test rig, while the drop-
weight tower was employed to obtain velocity measurements for
the coefficient of restitution estimation.4 A detailed description of
the test rigs and experimental procedures can be found in Ref.
�33�.

The experimental setup for impact force measurements �see
Fig. 1� is composed of a massive iron base to house the cylindrical

specimen, a pendulum mechanism to enable impact of the ball on
the specimen, and the video camera system to record the orienta-
tion of the accelerometer �as described in Sec. 4.1�. The cylindri-
cal specimen is glued using Loctite metal adhesive to a flattened
and polished area on one side of the iron base. The main compo-
nents of the pendulum mechanism are illustrated in Fig. 2; the
mechanism is fixed to a steel hanger mounted on top of the iron
bulk. The angle scale is calibrated so that the 90 deg orientation
coincides with the line of the pendulum in static equilibrium under
gravity.

The steel ball, initially held manually, is released from a par-
ticular angle, and falls on the free surface of the cylindrical speci-
men to make a central direct impact. The vertical position of the
cylindrical specimen is such that the ball impacts the center of its
free surface. It is also noted that when hung freely, the steel ball of
the pendulum is just touching the cylindrical specimen. The steel
ball is instrumented with an accelerometer �PCB 352C23�, which
is glued to a circular flat on the ball, as illustrated in Fig. 2�a�. The
accelerometer is powered by a signal conditioner �PCB 480C02�
and the data from it is collected by a digital oscilloscope �TEK
TDS3052B� �see Fig. 1�. The range of the accelerometer allowed
impact force experiments with the pre-impact velocities of vi
�0.5 m /s.

The coefficient of restitution experiments to obtain velocity
measurements are conducted on a drop-weight tower, which is an
iron structure composed of a base, an upper frame, and a releasing
mechanism, as shown in Fig. 3. The center of the releasing
mechanism is above the center of the top surface of the base
cylinder, with the alignment guaranteed by the two vertical steel
poles mounted on the base. Mounted on top of the releasing part is
a pointer toward the steel ruler for measuring the height of the
releasing mechanism.

For the velocity measurements, the specimen �C1 or C2� is
centered on the top surface of the base cylinder and is tightly
constrained to it with four steel plates, as illustrated in Fig. 3. The
steel ball, released from a certain height �adjustable by a dc
winch�, impacts the top surface of the specimen, followed by a
number of rebounds. The resulting motion is imaged by Kodak
Motion Corder Analyzer composed of a processor and a video

2Equation �6.10� from Johnson �21� yields a slightly lower coefficient of 21.167 in
Eq. �4�.

3The dilatational wave speed c1 may be more appropriate for the geometries
considered here; however, the corresponding value is higher than c0 resulting in a
lower value of Twave. Therefore, the result obtained here provides a conservative
estimate.

4The pendulum test rig cannot be used to accurately measure the postimpact
velocity because of the vibration of the pendulum string and the ball after impact.

Fig. 1 Experimental setup for force measurement using pen-
dulum test rig „not to scale…

Fig. 2 Pendulum mechanism
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camera with a frame rate of a 1000 frames/s. The camera is
mounted horizontally on a tripod, with the camera lens at the
height of the impact, approximately 25 cm away. The images
captured by the camera are transmitted to the processor and then
downloaded to a computer as image frames for further processing.

4 Experimental Procedures

4.1 Force Measurement Procedures. As noted earlier, the
pendulum test rig is utilized for the impact force experiments to
measure the impact force profiles. In these experiments, the steel
ball, initially held manually, is released from an angle indicated by
the pendulum string against the angle scale. The geometry of the
pendulum is illustrated in Fig. 4 where point A is the origin of the
angle scale, point O is the pivot point of the pendulum, r is the
radius of the angle scale, d is the distance between points O and
A, and L is the distance between points O and C. Referring to Fig.
4, application of energy conservation to the pendulum ball yields
a relationship between the pre-impact velocity vi and the pendu-
lum angle �:

vi =�10gL3� 1 − cos �

2R2 + 5L2	 �5�

where R is the radius of the steel ball and the other geometric
parameters are indicated in Fig. 4. It is noted that the possible
error in vi calculated with Eq. �5� from the effect of aerodynamics
on the ball is negligible. From the same figure, we can also deduce
the relationship between the releasing angle � and the measured
angle � as

� = arctan� r sin �

r cos � − d
	 �6�

It was mentioned in Sec. 1 that our experimental study is partly
dedicated to nearly elastic impacts with negligible permanent de-
formation and therefore, very low impacting velocities are desir-
able. However, the lowest impact velocity attainable with accept-
able accuracy is approximately 0.1 m/s, corresponding to the
releasing angle of 5 deg. Hence, in the force measurement with
the pendulum test rig, the following initial impact velocities vi are
targeted: 0.1 m/s, 0.15 m/s, 0.2 m/s, 0.3 m/s, 0.4 m/s, and 0.5 m/s.
The corresponding releasing angles � rounded to the nearest inte-
ger and their corresponding initial impact velocities are tabulated
in Table 3.

When impact occurs between the ball and the specimen, the
acceleration signal generated by the accelerometer on the ball in
the form of a voltage profile is acquired by the oscilloscope at a
sampling frequency of 5 MHz. The acquisition process is trig-
gered by the acceleration signal itself when the signal value ex-
ceeds the trigger level set in the oscilloscope. A pre-trigger value
is also defined for complete data acquisition over a certain period
ahead of the triggering instant. The acceleration profiles of the ball
are obtained by multiplying the voltage data with the calibrated
sensitivity coefficient. Finally, the impact force on the ball is de-
termined from Newton’s second law as F=ma, m being the mass
of the ball and a being the measured acceleration along the line of
impact.

Possible sources of error in the force measurement correspond-
ing to the calculated initial impact velocity are the additional cen-
tripetal acceleration measured by the accelerometer on the surface
of the ball and the inaccuracies induced by the manual operation
of the ball. The latter may induce rotation of the ball about the
pendulum string, which would produce a deviation of the accel-
erometer from the desired orientation along the line of impact.
This deviation, if it occurred, was identified by visual inspection
of the images obtained with the video camera and the correspond-
ing tests were discarded from the data postprocessing. In this
manner, a total of 6 “good” sets of test data are obtained for each
vi. We also point out that the specimens �C1 and C2� were
grounded down and polished between experiments to minimize
the effects from prior impacts, for example, residual deformations
and strain hardening, on subsequent tests.

The additional centripetal acceleration mentioned above arises
from the rotation of the ball, which in turn results from two fac-
tors: �1� from the rotation of the ball about the pin joint of the
pendulum right before the impact and �2� from the friction force
generated at the impact point, and acting throughout the impact
process. Fortunately, the two effects produce rotations in opposite
directions of the same order of magnitude and therefore result in
only a very small additional acceleration ��0.1% of peak mea-
sured acceleration�.

Fig. 3 Experimental setup for velocity measurement „not to
scale…

Fig. 4 Geometry of angle scale

Table 3 Releasing angles and corresponding initial impact velocities

Releasing angle � �deg� 5 8 11 16 21 27

vi �m/s� 0.0938 0.1500 0.2060 0.2989 0.3910 0.5000
Desired vi �m/s� 0.1 0.15 0.2 0.3 0.4 0.5
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4.2 Velocity Measurement Procedure. As noted earlier, the
pre- and postimpact velocities required to determine the coeffi-
cient of restitution are measured using the video camera system
with the drop-weight tower test rig. These experiments are carried
out for pre-impact velocity ranges of 0.15 m /s�vi�0.8 m /s for
specimen C1 and 0.15 m /s�vi�0.5 m /s for specimen C2. For
lower impact velocities, vi�0.5 m /s, the following procedure is
employed to achieve the most accurate results. The ball is dropped
from a certain height H and the repetitive impacts and rebounds of
the impact process are captured with the video camera. The result-
ing image sequences are processed manually, frame by frame, to
evaluate the pre- and postimpact velocities for each impact other
than the first. For example, the two images corresponding to the
first two consecutive impacts can be identified and the time 	t1
elapsed between them determined from the camera frame rate and
the frame numbers. Thus, the pre-impact velocity for the second
impact is obtained by using the free-fall relations vi2=g	t1 /2.
Similarly the pre-impact velocity for the third impact can be ob-
tained from vi3=g	t2 /2 with 	t2 as the time interval between the
second and the third impacts. Under the free-fall conditions, the
pre-impact velocity of the third impact is equal in magnitude to
the postimpact velocity of the second impact, i.e., v f2=−g	t2 /2.
In this fashion, we can obtain pre- and postimpact velocities for
all the following impacts.

For higher impact velocities for specimen C1 �vi
0.5 m /s�,
the initial impact velocity vi can be evaluated accurately from vi

=�2gH, while the velocity of the ball after impact is determined
using a similar estimation procedure as described above.

Possible sources of error in the velocity measurement proce-
dures are the effect of aerodynamics on the ball, which was again
ascertained to be negligible. Other effects include the small inac-
curacies introduced during the manual release of the ball, relevant
when the pre-impact velocities are determined directly from the
releasing height, and the effect caused by any permanent defor-
mation from the previous impacts on the top of the cylindrical
specimen when the velocities are determined from multiple re-
bounds. To minimize the influence of these errors, all experiments
are repeated to obtain at least ten sets of data and appropriate
averaging of the results is used for the calculation of the coeffi-
cient of restitution in Sec. 5.1.

It is noted that the accuracy of the above velocity estimation
and the corresponding coefficient of restitution degrades signifi-
cantly for very low impact velocities �vi�0.1 m /s�, and hence
the lower bound of vi=0.15 m /s is used in the coefficient of
restitution experiments. The values of e for impact velocities
lower than 0.15 m/s, if required, are obtained from the curve fit of
the measured results.

5 Experimental Results: Measurements and Postpro-
cessing

5.1 Coefficient of Restitution. As described in Sec. 4.2, the
images captured by the camera system from the coefficient of

restitution experiments are processed to extract the pre- and
postimpact velocities for each nominal impact velocity. Then the
coefficient of restitution is obtained as

e = − v f/vi �7�
It is noted that the postimpact velocities for a particular pre-
impact velocity show good precision as demonstrated by the error
bars in Fig. 5 where the coefficient of restitution e is plotted as a
function of vi, with the experimental results indicated by crosses
for specimen C1 and circles for specimen C2. These results con-
firm the expected decrease in e with increasing pre-impact veloc-
ity, as well as the significantly lower values for the specimen with
the lower yield strength �C2�. Relative to the results for a steel
sphere impacting a cast iron plate reported in Ref. �1�, our experi-
mental setup produces values of e 20–30% higher for specimen
C1 and slightly higher for specimen C2 for the same range of
impact velocities.

The plots in Fig. 6 include a linear fit �dashed line� and a
nonlinear �dotted line� fit of the experimental data for each speci-
men, obtained with the nonlinear least-squares curve-fitting algo-
rithm in MATLAB. The general form of the linear fit was stated
previously in Eq. �3� while the nonlinear approximation is formu-
lated as

Table 4 Identified parameters of the linear and nonlinear ap-
proximations for e

Parameters

Specimens

C1 C2

� �Eq. �3�� 0.0888 0.5436
�n �Eq. �8�� 0.0626 0.3860
�n �Eq. �8�� 0.3637 0.6475

Fig. 5 e as a function of vi for the two specimens

Fig. 6 Approximations of e as a function of vi: „a… specimen C1 and „b…
specimen C2
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e = 1 − �nvi
�n �8�

The calculated values of �, �n, and �n for the two specimens are
tabulated in Table 4. Figure 6 also demonstrates that the nonlinear
fit provides a slightly better approximation of the experimental
data and is therefore employed to estimate the coefficient of res-
titution at intermediate impact velocity values as required. The
coefficients of restitution for the two specimens at the velocities
employed in the impact force experiments are tabulated in Table
5.

5.2 Impact Force Estimation. We now present the impact
acceleration results obtained from the pendulum test-rig experi-
ments along with the data processing procedure. From the post-
processed acceleration profiles, the impact forces are determined
directly as described in Sec.4.1.

5.2.1 Impact Acceleration Results. The acceleration signals
measured with the accelerometer in the pendulum experiments
with both types of specimens are plotted in Fig. 7 for the smallest
and highest impact velocities employed. In these plots, the trig-
gering instant corresponds to time 0.0 in the impact process, so
that the time values in advance of this �starting from the pretrigger
instant� are represented by negative values in all time responses.

As observed from Fig. 7, the acceleration signals are character-
ized by significant oscillations due to the resonance induced by
the impact. The power spectra of the acceleration signals were
obtained in the frequency range from dc up to the Nyquist fre-
quency. Details in the low-frequency range �up to 120 kHz� are
displayed in Fig. 8 for impact of Fig. 7�b� with measurements
during and after impact.

The power spectrum of the acceleration signal during impact
�Fig. 8�a�� has the strongest peak at low frequency, two significant
secondary peaks near 79 kHz and 88 kHz and two tertiary peaks
near 55 kHz and 99 kHz. It is important to point out that the four
“extraneous” peaks appear in all the power spectra of the accel-
eration signals for both specimens and different pre-impact veloci-
ties. The 79 kHz component coincides with the specified reso-
nance frequency of the accelerometer, this being further confirmed
by the Fast Fourier Transform �FFT� results of the postimpact
acceleration signal �Fig. 8�b��. We conjecture that the other three
secondary peaks correspond to the frequencies of elastic wave
propagation5 and/or the resonances inside the steel ball, as the
same peaks appear in Fig. 8�b�, after the impact.

5We estimate the frequencies corresponding to the longitudinal and dilatational
waves to be 51 kHz and 57 kHz, respectively.

Fig. 7 Acceleration waveforms: „a… specimen C1: vi=0.0938 m/s, „b…
specimen C1: vi=0.5 m/s, „c… specimen C2: vi=0.0938 m/s, and „d… speci-
men C2: vi=0.5 m/s

Fig. 8 Frequency spectrum of acceleration signal for speci-
men C1 at vi=0.5 m/s: „a… during impact and „b… after impact

Table 5 Coefficient of restitution for the pre-impact velocities in the impact force experiments

Specimens

vi
�m/s�

0.0938 0.1500 0.2060 0.2989 0.3910 0.5000

C1 0.9735 0.9672 0.9647 0.9596 0.9555 0.9547
C2 0.9166 0.8892 0.8612 0.8234 0.7899 0.7568
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5.2.2 Impact Forces. The impact forces can be determined
directly from the acceleration signals but first the latter are filtered
by using a digital low-pass filter. Here, we make use of the popu-
lar Butterworth filter from the signal processing toolbox in MAT-

LAB because of its flat passband characteristics. Based on the re-
sults of the FFT analysis, the cutoff frequency is selected at 20
kHz and we use the third order filter. Thus, the six sets of accel-
eration data, obtained from the six experiments for each pre-
impact velocity vi, are filtered, respectively, and averaged, and the
results are used to calculate the impact force between the ball and
the cylinder specimen, as discussed in Sec. 4.1.

In Fig. 9 we illustrate all six impact force profiles for the impact
scenario with vi=0.5 m /s for both specimens. As can be seen, the
force responses at this impact velocity are in excellent agreement
for specimen C1. They are also in very good agreement during
compression and restitution phases for specimen C2, however,
exhibit a more noticeable spread near the peak impact force. The
variations in the peak force values for the impact velocities con-
sidered are measured by the standard deviation as percentage of
the average peak impact force and are tabulated in Table 6 for
both specimens.

6 Impact Model and Simulations
Validation of the nonlinear compliant contact force models

must be done by comparing the simulated impact force response
from the models to the experimentally observed results. This sec-
tion is devoted to the modeling of the pendulum impact scenario
and the corresponding results obtained with different Hunt–
Crossley type models.

6.1 Impact Model for Pendulum Test Rig. The impact sys-
tem in the pendulum setup is composed of the steel ball and the
cylindrical specimen �C1 or C2� glued to the massive iron bulk
and thus constitutes a 1DOF dynamics system, as illustrated in
Fig. 10. Employing Hunt–Crossley modeling to represent the im-
pact force, we can write down the equation of motion for the steel
ball during impact as

Fc = − md̈ = dn�k + �ḋ� �9�

where d is the impact penetration between the steel ball and the
fixed surface, which also represents the displacement of the center
of mass of the steel ball. The result of numerical integration of Eq.
�9� for the penetration d and its rate can be substituted into the

Hunt–Crossley model to calculate the simulated impact force be-
tween the steel ball and the cylindrical specimen.

The parameters of the model are the mass of the steel ball, m
=0.54 kg, the power exponent n, and the stiffness and damping
coefficients of the compliant contact force model, k and �. Here, n
and k are defined in accordance with the Hertzian theory so that
n=1.5, k=2.4614�1010 N /sn for specimen C1 and k=2.4144
�1010 N /sn for specimen C2, while � is obtained as per Table 1
for the five compliant contact force models �see Table 7�. We note
that �, involved in Hunt and Crossley’s and Lee and Wang’s defi-
nitions of damping coefficient, is obtained from the linear fit of
the coefficient of restitution, i.e., � in Table 4. On the other hand,
the models by Herbert and McWhannell �14�, Lankarani and Ni-
kravesh �16�, Zhang and Sharf �18�, and Gonthier et al. �17� em-
ploy the coefficient of restitution directly to define their respective
�, in which case e is taken from Table 5.

6.2 Simulation Results. The dynamics equations �9� for the
pendulum impact have been simulated in MATLAB with the ODE45
solver for the initial impact velocities used in the experiments. For
conciseness, only the simulation results corresponding to two “ex-
treme” velocities, i.e., 0.0938 m/s and 0.5 m/s, are illustrated in
this section. The simulated force profiles obtained from the five
Hunt–Crossley type contact force models discussed in Sec.
2—LW, LN, HC, HM, and ZS—are presented in Figs. 11 and 12
where the plots on the right-hand side show the zoom-ins near the
peak force values to demonstrate more clearly the differences be-
tween the models. Also included in Figs. 11 and 12 are the simu-
lated results obtained with the Hertz model of contact �Hz�, per
Eq. �1�, to allow a more clear demonstration of the effect of the

Table 6 Standard deviation of peak impact forces „%…

Specimens

vi
�m/s�

0.0938 0.15 0.2060 0.2989 0.3910 0.5

C1 2.8 0.9 0.8 3.4 2.1 1.5
C2 5.4 2.9 4.5 4.5 2.4 4.7

Fig. 9 All impact force profiles with vi=0.5 m/s: „a… specimen C1 and „b…
specimen C2

Fig. 10 Model of pendulum impact system
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damping term on the impact force profiles. The results in these
figures reveal the following:

�1� An obvious and not surprising observation is that for a
particular impact velocity, the differences between the
models are more pronounced for the specimen with lower
yield strength �C2�, while for a particular specimen, the
differences are more significant for higher impact veloci-
ties.

�2� For specimen C1 and the velocities considered, the differ-
ences between Hunt–Crossley series of models are not sig-
nificant, which renders accurate differentiation between
them impossible. By contrast, for specimen C2 with lower
coefficients of restitution, there is a visible discrepancy be-
tween the five damped models for all velocities. At the
highest experimental velocity considered here, there is a
substantial disagreement between the Hunt–Crossley type
models, both individually and between them as a group and
the predictions based on Hertz model. Interestingly, all
models are very consistent in predicting the duration of
impact.

�3� Hunt–Crossley series of models tend to be in better agree-
ment during the compression phase, with the differences
becoming more pronounced during the restitution phase.

�4� The ZS model, which recall is considered to be the most
accurate in the series of Hunt–Crossley models, tends to
produce lowest peak forces and shortest compression
phases. Its predictions tend to be furthest away from the
Hertzian nondissipative response.

Fig. 13 Comparison of impact force profiles for specimen C1
between simulation „dash line… and experimental results „solid
line…: „a… vi=0.0938 m/s, „b… vi=0.15 m/s, „c… vi=0.2060 m/s,
„d… vi=0.2989 m/s, „e… vi=0.3910 m/s, and „f… vi=0.50 m/s.

Table 7 Damping coefficients � „Ã1010
… employed in simulations for specimens C1 and C2

Models

vi
�m/s�

0.0938 0.15 0.2060 0.2989 0.3910 0.50

Lee and Wang�LW� C1 0.164 0.164 0.164 0.164 0.164 0.164
C2 0.984 0.984 0.984 0.984 0.984 0.984

Lankarani and Nikravesh �LN� C1 1.029 0.794 0.622 0.489 0.411 0.327
C2 3.086 2.527 2.271 1.951 1.742 1.547

Hunt and Crossley �HC� C1 0.328 0.328 0.328 0.328 0.328 0.328
C2 1.969 1.969 1.969 1.969 1.969 1.969

Herbert and McWhannell �HM� C1 1.071 0.834 0.655 0.519 0.439 0.350
C2 3.487 2.968 2.772 2.504 2.333 2.159

Zhang and Sharf �ZS� C1 1.072 0.835 0.656 0.520 0.440 0.350
C2 3.510 3.004 2.827 2.589 2.450 2.310

Fig. 11 Simulated impact force profiles for specimen C1: „a…
vi=0.0938 m/s „original…, „b… vi=0.0938 m/s „zoomed in…, „c…
vi=0.5 m/s „original…, and „d… vi=0.5 m/s „zoomed in…

Fig. 12 Simulated impact force profiles for specimen C2: „a…
vi=0.0938 m/s „original…, „b… vi=0.0938 m/s „zoomed in…, „c…
vi=0.5 m/s „original…, and „d… vi=0.5 m/s „zoomed in…
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�5� Figure 12�c� provides a vivid picture of the effect of the
nonlinear damping term on the impact force response: com-
pared with Hertzian response, the damping term introduces
a substantial asymmetry in the force profile between the
compression and restitution phases. We shall return to this
observation shortly when comparing the simulated and ex-
perimental results.

7 Comparison Between Simulation and Experimental
Results

In this section, the simulation results are compared with the
experimental results. Given the rather small differences between
the contact force models for specimen C1, only the nonlinear
energy-consistent impact force model �ZS� results are presented in
the comparison for this specimen. For specimen C2, however, we
also include the Hertz model predictions.

7.1 Specimen C1. For the impact scenarios with specimen
C1, the simulated impact force profiles are illustrated against the
experimental results with the initial impact velocity ranging from
0.0938 m/s to 0.5 m/s in Fig. 13. As expected, the impact forces
predicted by the model and observed experimentally rise with the
increase in the impact velocity; this accompanied by the shrinking
impact durations from 0.28 ms to 0.21 ms. We also observe that
during both the compression and the restitution phases, the simu-
lation results are in very good agreement with the experiments in
that the two exhibit similar slopes of the force profiles, although
the experimental responses slightly lag the simulation.

The peak forces are overall in very good agreement with maxi-
mum discrepancy of 3.1% occurring at vi=0.2989 m /s �see Table
8�. Recall that the estimated force value to initiate permanent
deformation during impact for specimen C1 is 6674 N �see Table
2�. Therefore, all impact scenarios with this specimen are ex-
pected to fall in the “elastic” impact category and we attribute the
small energy dissipation �e� �0.95,0.97�� to the elastic wave
propagation.

The results in Fig. 13 also exhibit excellent agreement between
the model prediction and the experimental data for the duration of
impact. A more detailed analysis of the component phases—
compression and restitution—indicates that both simulation and
experiment exhibit slightly shorter compression time6 than the
restitution time for a specific impact velocity. The model predic-
tions underestimate the compression times and overestimate the
restitution times: the two effects nearly cancel, thereby yielding
excellent agreement in the overall impact time �within 2%�.

7.2 Specimen C2. For the impact scenario with specimen C2,
the two simulated impact force profiles—that obtained with ZS
Hunt–Crossley type model and that predicted with Hertz’s
model—are illustrated against the experimental results in Fig. 14.
Inspection of these plots reveals some interesting observations.

Similarly to the results for specimen C1, the experimental force
profiles display a slower rise time compared with the Hunt–
Crossley �ZS� simulation results. Much more drastic, however, are

the discrepancies in the slopes of the force profiles, both during
the compression and restitution phases. The experimental results
exhibit a nearly symmetrical profile about the peak force instant,
similar to the Hertzian profiles. However, the ZS model predicts a
substantially faster compression and slower restitution, while, as
for specimen C1, the total impact duration is still predicted very
accurately �within 5%�. A more detailed analysis of the compres-
sion and restitution times �Tc and Tr� is presented in Table 9 for
simulated and experimental responses. In particular, we calculate
the ratios Tr /Tc and compare both the simulated and experimental
results to the theoretical ratio of the time of plastic indentation to
the time of elastic rebound. An approximation for the latter is
derived by Johnson �21� as 1.2e, based on the assumptions of fully
plastic indentation and elastic rebound governed by Hertz theory.
The results in Table 9 demonstrate complete divergence between
the simulated ratios from the Hunt–Crossley energy-consistent
model and the theoretical ratios of Ref. �21�. By contrast, the
experimental results show the same general trend as theory and
are reasonably close to the theoretical values.

Finally, the peak force predictions of the Hunt–Crossley model
are still in very good agreement �within 5%� as shown in Table 10,
while the Hertzian responses display substantially higher peak
forces than observed experimentally. Note that the maximum im-
pact forces exceed the value required to initiate permanent defor-
mation �42 N� as per our previous analysis in Sec. 3.1 and there-
fore, according to the criteria in Ref. �24�, all impact scenarios
considered for specimen C2 fall into the elastoplastic category of

6The compression time is measured as the time to peak force. Results in Fig. 16
confirm that this is a very accurate approximation of the compression time �time to
maximum deformation�.

Table 8 Comparison of maximum impact forces for specimen C1 in the pendulum
experiments

vi �m/s� 0.0938 0.15 0.2060 0.2989 0.3910 0.50

Fmax Simulation �N� 651.6 1140.7 1666.8 2598.3 3578.6 4804.8
Fmax Experiment �N� 663.0 1126.9 1633.6 2521.4 3519.7 4709.6
Difference �N� �11.4 13.8 33.2 76.9 58.9 95.2
% error �1.7 1.2 2.0 3.1 1.7 2.0

Fig. 14 Comparison of impact force profiles for specimen C2
between simulation „ZS: dash line; Hertz: dash-dot line…, and
experimental „solid line… results: „a… vi=0.0938 m/s, „b… vi
=0.15 m/s, „c… vi=0.2060 m/s, „d… vi=0.2989 m/s, „e… vi
=0.3910 m/s, and „f… vi=0.50 m/s
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impact. Incidentally, we note that plastic deformation on the cy-
lindrical specimen surface starts to be visible for vi=0.15 m /s.

7.3 Comparison of Two Specimens. Since the pendulum im-
pact experiments involved two specimens with different yield
strength values and were conducted under the same conditions, we
are in a unique position to juxtapose the results for the two speci-
mens and offer further insights into the impact phenomenon. In
Fig. 15, we display the experimental force profiles for the two
specimens for the six impact velocities tested in the pendulum
experiments. These results demonstrate that the ordering of the
peak impact forces for the particular pre-impact velocity is
�Fmax�C1
 �Fmax�C2, in accordance with the ordering of the yield
strength of the two specimens. We suggest that this can be attrib-
uted to the significant permanent deformation that occurs on the
specimen with the lower yield strength �C2�, which is also sup-
ported by the fact that the difference in the peak impact forces
between the two specimens is very small at vi=0.0938 m /s and
increases �in relative terms� for higher impact velocities.

Additional insight can be gained by inspecting the force versus
penetration and velocity versus penetration diagrams for the two
specimens. These are presented in Figs. 16 and 17, respectively,
for impact velocities of 0.0938 m/s ��a� plots� and 0.5 m/s ��b�
plots�, where the velocity and penetration data for the impact pro-
cess were generated by integrating the accelerations collected
from the pendulum test rig experiments. Though the accuracy of
these results is limited by the numerical integration of the accel-
eration signal, we deem them sufficiently accurate for the qualita-
tive analysis presented here.

The force-penetration plots in Fig. 16 exhibit the presence of
significant plastic deformation for the C2 specimen and show that

Table 10 Comparison of peak impact forces for specimen C2

vi �m/s� 0.0938 0.15 0.2060 0.2989 0.3910 0.50
Fmax ZS model �N� 628.0 1089.9 1577.5 2435.4 3332.7 4448.0
Fmax Experiment �N� 660.2 1076.6 1533.1 2447.9 3303.3 4364.6
Difference �N� �32.2 13.3 44.4 �12.5 29.4 83.4
% error �4.9 1.2 2.9 �0.5 0.9 1.9

Fig. 15 Comparison of impact force profiles between speci-
mens C1 „solid line… and C2 „dotted line…: „a… vi=0.0938 m/s,
„b… vi=0.15 m/s, „c… vi=0.2060 m/s, „d… vi=0.2989 m/s, „e… vi
=0.3910 m/s, and „f… vi=0.50 m/s

Table 9 Comparison of time variables for specimen C2

vi
�m/s�

Simulation Expt. Theor.

Tc
�10−4 s�

Tr
�10−4 s� Tr /Tc

Tc
�10−4 s�

Tr
�10−4 s� Tr /Tc 1.2e

0.0938 1.31 1.56 1.1908 1.44 1.32 0.9167 1.0999
0.15 1.16 1.46 1.2586 1.29 1.23 0.9535 1.0670
0.2060 1.05 1.41 1.3429 1.26 1.13 0.8968 1.0334
0.2989 0.94 1.37 1.4574 1.18 1.05 0.8898 0.9881
0.3910 0.85 1.35 1.5882 1.14 0.96 0.8421 0.9479
0.50 0.78 1.32 1.6923 1.12 0.95 0.8482 0.9082

Fig. 16 Experimental impact force versus penetration diagrams: „a… for vi
=0.0938 m/s and „b… for vi=0.5 m/s
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for the same penetration, its response is consistently characterized
by lower impact forces and from Fig. 17, higher velocities during
the compression phase than those observed for C1 specimen. This
correlates with the intuitive notion of plastic deformation, the ef-
fect of which is a “softening” of the material. Further inspection
of the plots in Fig. 17 indicates that impact of the “softer” speci-
men is accompanied by somewhat larger maximum deformation
and the velocity profile demonstrates a significant asymmetry
about the zero-velocity line, particularly visible for the higher
impact velocity. Note that for vi=0.5 m /s, the postprocessed re-
sults in Figs. 16 and 17 also show a small residual deformation in
the C1 specimen.

In spite of the clear presence of hysteresis and asymmetries in
the phase plots of the impact response for specimen C2, the force-
time profiles of Fig. 15 retain their symmetrical shape for the
lower yield specimen. This is in stark contrast to the predictions of
all Hunt–Crossley models, which introduce a clear asymmetry in
the force responses.

8 Conclusions
In this paper, impact experiments involving a spherical ball

impacting two specimens of different yield strengths were con-
ducted to validate the Hunt–Crossley series of models. In the ex-
periments, the coefficient of restitution and impact force profiles
were measured, the latter compared with the simulation results
from the models and the former used as the input to the model.
Based on these results, we can make the following conclusions.

1. For nearly elastic impacts, those characterized by coeffi-
cients of restitution larger than approximately 0.95, the
Hunt–Crossley nonlinear models provide excellent predic-
tions of the impact force response, in particular, the peak
impact forces, the slopes during restitution and compression
phases, the corresponding times, and the total impact dura-
tion, but underestimate the compression time and overesti-
mate the restitution time. For these same conditions, how-
ever, there are insignificant differences between the five
Hunt–Crossley models discussed in this manuscript and it is
therefore virtually impossible to differentiate between them,
given practical limitations of the experimental measure-
ments and instrumentation. Furthermore, at these conditions,
the Hunt–Crossley models do not deviate substantially from
the Hertz’s model predictions ��2% discrepancies in peak
forces, for example�.

2. For impacts that exhibit non-negligible energy dissipation,
for example, through plastic deformation, even on a micro-
scale, the results of our research beg for a more cautious use
of Hunt–Crossley type models. In these cases, the energy-
consistent model developed in Refs. �17,18� provides a good
estimate of the peak force and the duration of impact. Yet, as
observed for all five damped models, addition of the nonlin-
ear damping term significantly skews the force-time
responses—a result that was not confirmed by the experi-
mental measurements for the lower yield specimen.

In summary, Hunt–Crossley type models, which explicitly rep-
resent viscoelastic impacts, perform very well in nearly elastic
impact scenarios �e
0.95�. Since the models do not account for
the mechanism of permanent deformation, their predictions of im-
pact force profiles are not as accurate when plastic deformation
becomes more significant, although they still produce excellent
estimates of the peak impact force values and the total impact
duration. Further experimental investigations with a broader range
of materials and impact velocities would be beneficial to provide a
more comprehensive database of impact force measurements. We
also suggest that new compliant models need to be developed to
properly capture the effects of plastic deformation on the contact
force response, by considering the analysis of plastic deformation
in Ref. �21� and the more recent finite element analysis in Ref.
�34�.
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Local Damage Evolution of
Double Cantilever Beam
Specimens During Crack
Initiation Process: A Natural
Boundary Condition Based
Method
Cohesive zone models are being increasingly used to simulate fracture and debonding
processes in metallic, polymeric, and ceramic materials and their composites. The crack
initiation process as well as its actual stress and damage distribution beyond crack tip
are important for understanding fracture of materials and debonding of adhesively
bonded joints. In the current model, a natural boundary condition based method is
proposed, and thus the concept of extended crack length (characteristic length l) is no
longer required and more realistic and natural local deformation beyond crack tip can be
obtained. The new analytical approach, which can consider both crack initiation and
propagation as well as local deformation and interfacial stress distribution, can be ex-
plicitly obtained as a function of the remote peel load P with the given bilinear cohesive
laws. An intrinsic geometric constraint condition is then used to solve the remote peel
load P. The nonlinear response in both the ascending and descending stages of loading
is accurately predicted by the current model, as evidenced by a comparison with both
experimental results and finite element analysis results. It is found that the local defor-
mation and interfacial stress beyond crack tip are relatively stable during crack propa-
gation. It is also found that, when the cohesive strength is low, it has a significant effect
on the critical peel load and loadline deflection. In principle, the approach developed in
the current study can be extended to multilinear cohesive laws, although only bilinear
cohesive law is presented in this work as an example. �DOI: 10.1115/1.3112742�

Keywords: CZM, bonded joint, crack initiation, local damage, FRP, analytical solution

1 Introduction
Fracture studies are usually carried out under several idealized

conditions, as in the case of linear elastic fracture mechanics or
the case of small scale yielding. In such cases, the details of the
stress-strain around the crack tip are uniquely characterized by a
single macroscopic parameter such as the stress intensity factor.
These global parameters are related to the corresponding material
properties typically the fracture toughness that determines the
critical conditions of crack initiation and growth. When the crack
tip experiences inelastic damage, the above concepts based purely
on the theory of elasticity are not valid. Further, for cracks along
bimaterial interfaces, the crack tip will no longer be embedded in
a square-root singular stress field, leading to a condition that stress
intensity factor may either be zero or infinity �1�. As an alternative
approach to this singularity driven fracture approach, the origins
of the concept of cohesive zone model �CZM� go back to the work
of Barenblatt �2� and Dugdale �3�.

CZM has evolved as a preferred method to analyze fracture
problems in monolithic and composite material systems not only
because it avoids the singularity but also because it can be easily
implemented in a numerical method of analysis such as in finite

element modeling. Therefore, various CZMs have been proposed
to investigate the fracture process in a number of material systems
including fiber reinforced polymer composites, metallic materials,
ceramic materials, cementitious or concrete materials, and bima-
terial systems. All of them start from the assumption that one or
more interfaces can be defined, where crack propagation is al-
lowed by the introduction of a possible discontinuity in the dis-
placement field. The fundamental calculations by Rose et al. �4�
suggest a universal exponential form of stress-separation law for
most common interfaces.

The polynomial and exponential types of traction-separation
law were first proposed by Needleman �5,6� to simulate particle
debonding in metal matrices. Tvergaard �7� developed a quadratic
traction-displacement relation to analyze interfacial fracture. Tver-
gaard and Hutchinson �8� used a trapezoidal shape of the traction-
separation model to calculate the crack growth resistance in elas-
toplastic materials. Xu and Needleman �9� further used
exponential types of traction-separation law to study the fast crack
growth in brittle materials under dynamic crack growth along the
interface of bimaterials. Camacho and Ortiz �10� employed a lin-
ear softening cohesive fracture model to investigate multiple
cracks along arbitrary paths during impact damage in brittle ma-
terials. Hilleborg et al. �11� developed a cohesive zone model to
simulate the crack formation and growth in concrete. Fundamen-
tally, their model is bilinear type. Geubelle and Baylor �12� used
bilinear CZM to simulate spontaneous initiation and propagation
of transverse matrix cracks in composite plates subjected to low-
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velocity impact. The main difference between these models lies in
the shape of the traction-displacement response and the param-
eters used to describe that shape. It is generally accepted that
CZMs can be described by two or three independent parameters
�13�. These parameters may be the fracture toughness �the area
under the traction-displacement curve, which is typically obtained
from experimental test�, the cohesive strength � f, and/or the char-
acteristic separation length �1 at which the cohesive traction
reaches its maximum.

However, the analytical effort by applying CZMs to study frac-
ture process faced some challenges, especially for the fracture
process under Mode I �normal separation� or mixed fracture
mode, because the fracture process under these loading conditions
is governed by fourth or higher-order differential equations. For-
tunately, the general solution of fourth or higher-order differential
equations is available for cohesive laws with linear or multilinear
type traction-separation relation. Kanninen �14� and Williams �15�
modeled the elastic deformation beyond the crack tip in a debond-
ing cantilever. In their models, the local deformation beyond the
crack tip was computed using a beam on a linear elastic founda-
tion with effective interfacial stiffness ke. Kinloch et al. �16� de-
veloped the concept of correction factors to analyze the debonding
of adhesively bonded joints under peel loading. The correction
factor method extends the crack length a by a characteristic length
l beyond the physical crack tip. With the corrected crack length
�a+ l�, the classical beam theory can be readily applied and well
compensated for the local deformation beyond the crack tip. As an
extension of the root correction factor method, Williams and Ha-
davinia �17� further analytically investigated the debonding pro-
cess with other nonlinear type of separation-traction laws, such as
linear damage and bilinear cohesive laws.

Although the previous studies helped significantly in modeling
and understanding the fracture and debonding process, they are
limited because �1� most previous analytical solutions of Mode I
peel specimen in the literature are based on root rotation correc-
tion method, which is basically an equivalent method. In the cur-
rent work, the concept of extended crack length �characteristic
length l� is no longer required. This modeling method seems more
natural and physically meaningful than the traditional root correc-
tion based equivalent method, which requires that all deforma-
tions must be simultaneously equal to zero at the location of the
characteristic length l beyond the crack tip. The natural boundary
condition based approach is developed to obtain a simple solution
of peel specimen with bilinear cohesive laws. �2� Few analytical
models considered the local damage evolution beyond crack tip
during the crack initiation process. There is a need to develop an
analytical model that can consider the entire process of crack ini-
tiation and propagation. For mixed mode loading, the critical nor-
mal cohesive separation � is generally less than its final cohesive
separation � f under pure Mode I loading. The understanding of
crack initiation process �0���� f� under pure Mode I loading
might help solve the mixed mode problem. �3� For the crack ini-
tiation and propagation process, the real local deformation and
interfacial stress distribution provide fundamental information for
understanding the distribution of the local damage and softening
size in the cohesive zone. This helps in understanding fracture of
materials and debonding of adhesively bonded joints. In this
study, the local deformation and interfacial stress beyond the
physical crack tip are solved in a simple and explicit form as a
function of the remote peel load P. Furthermore, an intrinsic geo-
metric constraint condition is found in the current study, which
provides a concise governing equation for solving the remote peel
load P. In principle, the method developed in the current study
can be extended to multilinear cohesive laws, although only bilin-
ear cohesive laws are presented in this work as an example.

2 Theoretical Background
Based on the classical Euler–Bernoulli beam theory and

J-integral theory, Olsson and Stigh �18� and Andersson and Stigh

�19� theoretically solved an inverse problem for the double canti-
lever beam �DCB� specimen �Fig. 1�. According to their deriva-
tion, for the given initial elongation w of the adhesive layer, the
applied force P and the rotation �P at the loadline are correlated
with J-integral as below:

2P · �P = b · J�2�� �1�

where b is the width of the beam.
It is noted that instead of defining the cohesive stress ��2�� as

a cohesive function of the relative separation 2� between the two
beams, we define a cohesive law for each single beam as

� = ���� �2�
The fracture energy is shared by the two single cantilever beam

�SCB� equally as

JDCB�w� = JDCB�2�� = 2JSCB��� �3�

Note that the function of JDCB for J�2�� is different from the
function of JSCB for J���, where 2� is the relative separation of the
two beams in the DCB specimen, and � is the separation of each
beam with respect to its original position. Therefore, Eq. �1� can
be rewritten as

�P · P =
JDCB�2�� · b

2
= JSCB��� · b �4�

Note that J��� in Eq. �4� is equal to half of the J-integral of the
DCB system JDCB�2��. It is given by Rice �20�

J��� =�
0

�

����d� �5�

and

���� =
�JSCB���

����
�6�

The cohesive law for the relative separation of the two beams
can be expressed as

�DCB�2�� =
�JDCB�2��

��2��
=

��JSCB��� + JSCB����
����

·
��

��2��
= ����

�7�
From Eq. �7�, it can be seen that with the definition of the

cohesive law for a single beam, the cohesive law for the relative
separation of the two beams in the DCB can be readily obtained.
Namely, if the separation is �, the cohesive stress is ����, and the
cohesive energy is J��� for a single beam, then the relative sepa-
ration is 2�, the cohesive fracture is 2J���, while the cohesive
stress is still ���� for the two beams. This means that the cohesive
law for a single beam is a shrunk cohesive law with respect to that
of the two beam system. The separation is twice as much as the
single beam cohesive law, while the interfacial stress � remains
the same, as illustrated in Fig. 2. We use J��� and ���� for an
individual beam in the following text for the purpose of clarity.

Fig. 1 Double cantilever beam specimen under peel loading
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3 Local Deformation and Interfacial Stress During
Crack Initiation Process

In order to examine the real cohesive zone size, instead of the
equivalent characteristic cohesive length, we need to solve fourth-
order differential equations. However, the full field solution of the
fourth-order differential equation is generally not available when a
nonlinear cohesive law is adopted. One solution is through the
multilinear cohesive zone model to approximate the nonlinear co-
hesive law. In the current study, a methodology is developed to
obtain a simple and explicit solution for the local deformation and
stress field with the obtained remote peel load P. The idea is to
first express all solution coefficients as a function of the remote
peel load P. Then the size of the elastic zone can be expressed as
a function of the remote peel load P. Further, we use the size of
the elastic region to express the size of the softening zone. Con-
sequently, the elastic zone and softening zone are derived as an
explicit function of the remote peel load P. Finally, by applying
the intrinsic geometric constraint condition, the remote peel load
P can be determined. With the determined remote peel load P, the
softening and elastic zone size beyond crack tip can be simply and
explicitly obtained. For the sake of simplicity, the shear deforma-
tion in the beam is not considered, and the classical Euler–
Bernoulli beam theory is applied.

A typical bilinear cohesive law is shown in Fig. 3. For most
CZMs in the literature, the traction-separation laws are such that
with increasing interfacial separation, the traction across the inter-
face reaches a maximum, then decreases, and eventually vanishes.
This typical bilinear separation-traction law has three segments:
�a� elastic stage when the normal interfacial separation ���1,
including negative separation �compression�. The normal interfa-
cial stress increases linearly with separation; �b� elastic softening
stage when �1���� f. The normal interfacial stress decreases
linearly with separation; and �c� complete debonding stage. There
is no interfacial stress when ��� f. The interfacial constitutive
law is described as follows:

��x� = � − k1 · ��x�, ��x� � �1

− �� f − ��x�� · k2, �1 � ��x� � � f

0, ��x� � � f
� �8�

Let us consider the local deformation beyond the crack tip, as
shown in Fig. 4. When the crack tip separation � is smaller than
�1, one can readily use linear elastic model �14� to obtain the
explicit solution for the range �0����1�. Since the elastic sepa-
ration limit �1 is normally small compared with its final separation
� f, let us focus on the crack initiation process when the crack tip
separation � is within the softening region ��1���� f�. Namely,
the crack tip separation � is larger than �1 �the characteristic sepa-
ration for linear elastic cohesive stress�, as shown in Fig. 4.

The governing equation for the descending branch �softening
region� in the bilinear CZM, as shown in Fig. 3, is given by

d4w�x1�
dx4 = 4�4�w�x1� − � f	 �0 � x1 � d1� �9�

The general solution of Eq. �9� can be written as

w�x1� = � f + C1 cos�
2�x1� + C2 sin�
2�x1� + C3 cosh�
2�x1�

+ C4 sinh�
2�x1� �10�
The governing equation for the ascending branch �elastic re-

gion� in the bilinear CZM, as shown in Fig. 3, is given by

d4w�x3�
dx3

4 = − 4�4w�x3� �11�

Fixing the origin of the coordinate x3 at the first zero-deflection
cross section as illustrated in Fig. 4, the general solution of Eq.
�11� can be simply written as

w�x3� =
− �1 exp�− �x3�

exp��d0�sin��d0�
sin��x3� �x3 � − d0� �12�

where

� =
4 bk2

4EI
, � =
4 bk1

4EI
�13�

and k1 and k2 are the interfacial stiffnesses for the elastic and
softening regions, respectively.

When the crack tip separation is equal to �, and consider the
equilibrium at the cross section at x1=d1 �x3=−d0 or x2=0�, we
can readily obtain

�1 − � f = C1 cos�
2�d1� + C2 sin�
2�d1� + C3 cosh�
2�d1�

+ C4 sinh�
2�d1� �14�

Fig. 2 CZM for double cantilever beam specimen and single
cantilever beam specimen

Fig. 3 Separation-stress relation for a typical bilinear CZM

Fig. 4 Schematic of local deformation beyond crack tip
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w1�


2�
= �− C1 sin�
2�d1� + C2 cos�
2�d1� + C3 sinh�
2�d1�

+ C4 cosh�
2�d1�� �15�

w1�

2�2 = �− C1 cos�
2�d1� − C2 sin�
2�d1� + C3 cosh�
2�d1�

+ C4 sinh�
2�d1�� �16�

w1�

2
2�3
= �C1 sin�
2�d1� − C2 cos�
2�d1� + C3 sinh�
2�d1�

+ C4 cosh�
2�d1�� �17�

where C1, C2, C3, and C4 will be determined by the boundary
conditions in terms of the rotation, peel force, moment, and cohe-
sive separation, and w1�, w1�, and w1� are the first, second, and third
derivatives with respect to x1 at x1=d1 �x3=−d0 or x2=0�, respec-
tively.

On the other hand, from the governing equation of the ascend-
ing branch of the bilinear CZM �see Fig. 3�, we can readily ex-
press w1�, w1�, and w1� at x3=−d0 �x1=d1 or x2=0� as follows:

w1� = − �1��1 + cot��d0�� �18�

w1� = 2�1�2 cot��d0� �19�

w1� = − 2�1�3�cot��d0� − 1� �20�

It is noted that d0 is used to denote the elastic zone size, which
is the length between the cross section with �=�1 and the cross
section with �=0 �the first zero-deflection cross section�, as
shown in Fig. 4. How to determine the unknown coefficients and
the actual softening and elastic zone’s sizes beyond crack tip in
the crack initiation process, instead of an equivalent characteristic
cohesive length �16�, is one of the primary purposes of the current
study.

From Eqs. �15� and �17�, it can be derived that

2C1 sin�
2�d1� − 2C2 cos�
2�d1� =
w1�

2
2�3
−

w1�


2�
�21�

From Eqs. �14� and �16�, it can be obtained that

2C1 cos�
2�d1� + 2C2 sin�
2�d1� = ��1 − � f� −
w1�

2�2 �22�

From Eqs. �15� and �17�, it can also be derived that

2C3 sinh�
2�d1� + 2C4 cosh�
2�d1� =
w1�

2
2�3
+

w1�


2�
�23�

From Eqs. �14� and �16�, it can also be found that

2C3 cosh�
2�d1� + 2C4 sinh�
2�d1� = ��1 − � f� +
w1�

2�2 �24�

Obviously, from Eqs. �21� and �22�, we have

���1 − � f� −
w1�

2�2�2

+ � w1�

2
2�3
−

w1�


2�
�2

= 4�C1
2 + C2

2� �25�

It can be observed from Fig. 3 and Eq. �13� that

� f − �1

�1
=

k1

k2
=

�4

�4 = 	4 �26�

We use 	=� /� to represent the ratio of the interfacial stiffness
for the bilinear CZM. Substituting Eqs. �18�–�20� into Eq. �25�
yields

�	�1 + cot��d0�� + 	3�1 − cot��d0��	2

2

+ 	2 cot��d0� + �� f − �1

�1
��2

=
4�C1

2 + C2
2�

�1
2 �27�

Using a similar method for coefficients C3 and C4, it can be
derived as

�	�1 + cot��d0�� + 	3�cot��d0� − 1�	2

2

− 	2 cot��d0� − �� f − �1

�1
��2

=
4�C4

2 − C3
2�

�1
2 �28�

When the separation at the crack tip is �, the displacement,
moment, and shear force boundary conditions at the crack tip
�x1=0� are given by

w�x1��x1=0 = �, w��x1��x1=0 =
Pa

EI
, w��x1��x1=0 =

P

EI
�29�

From these boundary conditions, the coefficients can be readily
expressed as

C1 =
� − � f

2
−

Pa

4�2EI
, C3 =

� − � f

2
+

Pa

4�2EI

C4 − C2 =
P

2
2�3EI
=


2� · P

bk2

�30�

�C2 + C4� · 
2� =�dw

dx
�

x1=0
= − �0

C2 =
1

2�− 
2� · P

bk2
−

�0


2�
�, C4 =

1

2�
2� · P

bk2
−

�0


2�
�

As discussed in Sec. 2, the crack tip rotation �0 can be conve-
niently expressed as a function of the remote peel load P and
crack tip separation � as follows:

�0 =
bJ���

P
−

Pa2

2EI
, J��� = 
 −

k2

2
�� f − ��2 �31�

where J��� is the area under the given cohesive law corresponding
to the separation �, and 
 is the interfacial toughness. When �
=� f, J���=
, and crack starts to propagate.

Adding Eq. �27� to Eq. �28�, we can obtain a quadric function
of the variable cot��d0�. By solving the quadric equation, the
positive root is derived as follows:

cot��d0� =
2
C1

2 + C2
2 − C3

2 + C4
2

	
�1� f

− 1 �32�

It is noted that only the positive root is physically meaningful
�cot��d0��0�. First, the elastic zone size d0 has to be larger than
zero, obviously. At the same time, it should be noted that �d0
must be less than � /2. Otherwise, the second derivative of Eq.
�12� can be zero at a certain cross section within the region 0
�x2�d0 �see Fig. 4�. This means that the beam’s internal bending
moment at a certain cross section in this region can be zero. Evi-
dently, this is physically impossible under peel loading, as illus-
trated in Fig. 4. Therefore, the upper bound of the elastic zone size
d0 must be less than � /2�. Since 0��d0�� /2, one can readily
see that cot��d0��0 �the positive root�.

Equation �32� gives the general explicit expression of the elas-
tic region size d0 for the crack initiation process. For the condition
when �=� f �crack propagation process�, it is noted that C1=−C3,
as implied by Eq. �30�. Thus, Eq. �32� can be further reduced to
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cot��d0� =
2
C2

2 + C4
2

	
�1� f

− 1 �33�

and the coefficients can be correspondingly simplified to

C3 = − C1 =
Pa

4�2EI
, C2 =

1

2�− 
2� · P

bk2
−

�0


2�
� ,

C4 =
1

2�
2� · P

bk2
−

�0


2�
� �34�

Note that �0 is a function of P; therefore, the coefficients C1,
C2, C3, and C4 are also a function of P for the given cohesive law.
From Eqs. �21�–�24�, we can obtain

cos�
2�d1� =
C1 · Y2 − C2 · Y1

C1
2 + C2

2 , sin�
2�d1� =
C2 · Y2 + C1 · Y1

C1
2 + C2

2

�35�

sinh�
2�d1� =
C3 · Y3 − C4 · Y4

C3
2 − C4

2 , cosh�
2�d1� =
C3 · Y4 − C4 · Y3

C3
2 − C4

2

�36�

where

Y1 =
− �1	3�cot��d0� − 1�

2
2
+

�1	�1 + cot��d0��

2
2
,

Y2 = −
�1

2
��� f − �1

�1
� + 	2 cot��d0��

Y3 =
− �1	3�cot��d0� − 1�

2
2
−

�1	�1 + cot��d0��

2
2
,

Y4 = −
�1

2
��� f − �1

�1
� − 	2 cot��d0�� �37�

From Eqs. �35� and �36�, respectively, we can further obtain

cot�
2�d1� =
C1 · Y2 − C2 · Y1

C1 · Y1 + C2 · Y2
= f1�P� �38�

sinh�
2�d1� + cosh�
2�d1� = exp�
2�d1� =
Y3 + Y4

C3 + C4
= f2�P�

�39�
Note that all parameters in Eqs. �38� and �39� are explicit func-

tions of the peel load P with the given bilinear cohesive law,
specimen geometry, and material properties. However, it is also
noted that with different values of d1, Eqs. �38� and �39� can be
satisfied for the coefficient set C1, C2, Y1, and Y2 and the coeffi-
cient set C3, C4, Y3, and Y4, respectively. Obviously, a physically
meaningful d1 should satisfy both Eqs. �38� and �39� simulta-
neously. Therefore, we have the intrinsic geometry constraint con-
dition for solving the remote peel load P as follows:

arccot�C1 · Y2 − C2 · Y1

C1 · Y1 + C2 · Y2
� = ln� Y3 + Y4

C3 + C4
� = 
2�d1 �40�

The remote peel force P can be obtained by solving the con-
straint equation �40�. The real remote peel load P is given by the
first positive solution of Eq. �40�. The solution can be obtained by
iterative method or numerical method. With the determined peel
load P, the softening zone size d1 can be expressed as follows:

d1 =
1


2�
· ln� Y3 + Y4

C3 + C4
� �41�

From Eq. �32�, the elastic zone size d0 can be readily deter-
mined as follows:

d0 =
1

�
arccot�2
C1

2 + C2
2 − C3

2 + C4
2

	
�1� f

− 1� �42�

The relative opening at the load line for the DCB specimen can
be written as

 = 2�� +
Pa3

3EI
+ �0a� �43�

where � is the crack tip opening in the crack initiation process.
When �=� f, crack starts to propagate. The origin of the coordi-
nate x1 is set at the crack tip, and it moves forward with the
propagated crack tip. Therefore, once the crack tip starts growing
after its initiation, ��� f, and J����
, if the value of toughness 

is treated as a material constant.

In principle, the method developed in this study can be applied
to any multilinear model using the continuous boundary condi-
tions. However, as an example, only the simplest multilinear
model: Bilinear cohesive law is presented in the current study. It is
noted that the local deformation and stress distribution are deter-
mined in a simple form when the softening zone size d1 and
elastic zone size d0 are completely explicit as a function of P for
a given cohesive law. Once d1 and d0 are obtained, the local
displacement field beyond the crack tip can be obtained with Eqs.
�10� and �12�. With the obtained local displacement field and by
applying the bilinear constitutive law as described by Eq. �8�, the
local interfacial stress distribution beyond the crack tip can be
finally determined.

When the crack tip separation � is smaller than �1, based on the
linear elastic model �14� and with the origin of the coordinate x at
the crack tip, the local displacement field can be simply rewritten
by

w�x� = e−�x�−
Pa

2EI�2sin��x� +
P�a + 1/��

2EI�2 cos��x�� �44�

With Eq. �44�, the elastic zone size d0, which is the distance
between the crack tip and the first zero-deflection cross section,
can be found for linear elastic stage as follows:

tan��d0� =
a + 1/�

a
�45�

Equation �45� indicates that when the crack tip separation � is
smaller than �1 �linear elastic loading stage�, the elastic zone size
d0 is a material and geometry constant during the crack initiation
process �crack length a is a constant� and is independent of the
peel load P. This shows an important difference between the lin-
ear elastic model and the nonlinear model. One can also see that
for a linear elastic model, the value of d0 can only vary in the
range between � / �4�� and � / �2�� during the crack propagation
process when the crack length a changes from 0 to infinity.

For a bilinear cohesive zone model, when any three parameters
are specified, the entire model can be completely determined. The
three parameters are chosen as the interfacial fracture energy
�toughness� 
, the maximum interfacial stress � f, and the interfa-
cial stiffness ratio K=k1 /k2. Once these three parameters are
specified, all other parameters can be obtained as below:

� f =
2


� f
, �1 =

� f

1 + k1/k2
, k1 =

� f

�1
, k2 =

� f

� f − �1
,

� =
4 bk1

4EI
, � =
4 bk2

4EI
�46�
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4 Validations and Parametric Studies
In order to validate the derivation in the current study, the ana-

lytical result is compared with numerical and experimental results.
The parameters for finite element analysis �FEA� and experimen-
tal data are listed in Table 1, and they are exactly followed by the
present analytical study. The experimental data were reported by
Andersson and Biel �21�. The interfacial stiffness ratio K is set as
8 for these two comparisons, and its effect will be evaluated in the
parametric study. The FEA and analytical results for steel-steel
bonded joints are shown in Fig. 5. From Fig. 5, it can be seen that
both crack initiation and propagation process are accurately pre-
dicted by the current model. The nonlinear response in the ascend-
ing branch of loading is well captured. Note that when �=4�1 �the
energy release rate is approximately 65% of the toughness 
�, the
peel load P has reached about 85% of the maximum peel load.
When �=�1 �the energy release rate is approximately 11% of the
toughness 
�, the peel load P has reached about 35% of the maxi-
mum peel load. When the crack tip opening ���1 �elastic range�,
the loading and unloading process may be treated as completely
recoverable. This load might be useful for fatigue design of
bonded joints. Figure 5 also indicates that the maximum peel load
does not correspond to the final crack tip opening � f, but slightly
less than that value, which is about 88% of the final separation � f.
However, the critical peel load Pcr �crack starts to propagate, �
=� f� is very close to the maximum peel load Pmax �less than 1%�.
Therefore, it may be reasonable to approximate the maximum peel
load by the critical peel load for the sake of simplicity. Figure 6
shows the comparison between the analytical results and experi-
mental data adopted from the study �21�. The excellent agreement
further validates the model developed in the current study.

The parameters from the experimental data of Andersson and
Biel �21� are used for the calculation of the local deformation and
stress beyond the crack tip. Based on the derivations in the current
study, Figs. 7 and 8 give the local deformation and stress beyond
the crack tip at different crack tip opening � �up to � f� by using
bilinear CZM with the interfacial stiffness ratio K=8 and initial
crack length a=50 mm. For comparison purposes, the local de-
formation and interfacial stress distribution with an initial crack
length of a=100 mm at crack tip opening �=� f are also included.
Generally, with the increase in crack tip opening �, the softening
zone d1 increases, while the elastic zone d0 decreases. However,
once the crack is propagated, the local deformation and stress

distribution remain stable. As seen in Figs. 7 and 8, the local
deformation and stress distribution at crack length a=50 mm and
100 mm are almost overlapped. It is emphasized that this result is
based on the assumption that the toughness and cohesive law re-
main unchanged regardless of the crack length a. If the plastic
dissipation is involved, the toughness will be contributed by the
intrinsic work of separation 
0 and the plastic work of the adhe-
sive layer or even the adherends, and the softening zone may grow
with the increase in the crack length a �22�.

Table 1 Geometry and material properties of FEA and test DCB specimen

Initial crack a0
�mm�

Width b
�mm�

Height h
�mm�

Modulus E
�GPa�

� f
�MPa�

Toughness 

�N/mm�

Test 50 5 4.5 210 19 0.65
FEA 20 5 1.5 210 19 0.65

Fig. 5 Comparison of analytical and FEA results

Fig. 6 Comparison of analytical and experimental results

Fig. 7 Local deformation of beam’s neutral axis beyond crack
tip with various crack tip openings and initial crack lengths

Fig. 8 Local interfacial stress beyond crack tip with various
crack tip openings and initial crack lengths
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Figure 9 provides the relationship between the remote peel load
P and the size of the softening zone and elastic zone. From Fig. 9,
it can be seen that the damage zone �d1� grows nonlinearly as the
remote peel load increases. On the other hand, the elastic zone
�d0� descends nonlinearly as the remote peel load increases. How-
ever, it is interesting to note that the total process zone �d1+d0�
grows nonlinearly with the increase in the remote peel load. Ob-
viously, this is in agreement with common knowledge. It is also
noted that, when the crack tip separation � is smaller than �1, the
elastic zone size d0 is a constant during the crack initiation pro-
cess as discussed before.

In order to investigate the effect of the interfacial stiffness ratio
K in the bilinear CZM on the peel load and local deformation
beyond the crack tip, a parametric study is conducted. Figures 10
and 11, respectively, show the local deformation and interfacial
stress beyond the crack tip with different K when the crack tip
separation �=� f at the initial crack length a=50 mm. The differ-
ence between the peel load P for different K=1 /8, 1, and 8 is less
than 0.5%. However, the local deformation and stress distribution
are significantly different for different K values, as seen in Figs.
10 and 11. The distinction of local deformation might become
very important when one considers a cyclic loading process since
the distribution of the local damage can be dominant for a cyclic
loading process. However, for a monotonic loading process, the
insensitivity of the remote peel load to the interfacial stiffness
ratio K is a very useful feature for the simplification of the deb-
onding problem as concluded by previous study �17�. As seen in
Fig. 10, the crack tip rotation �0 for different K is almost identical,
although the overall local deformations beyond the crack tip are
very different.

To further evaluate the effect of another parameter—the maxi-
mum interfacial stress � f on the remote peel load P and remote
loadline deflection —a parametric study is also conducted. The
critical peel load Pcr and corresponding loadline deflection cr are
plotted in Fig. 12 as a function of � f �� f varies from 0.5 MPa up
to 100 MPa� with constant interfacial stiffness ratio K=8. From
Fig. 12, the effect of the maximum interfacial stress � f on Pcr and
cr is different. When the maximum interfacial stress � f is larger
than a certain value, its effect is insignificant. However, for a
relatively lower value, such as 5 MPa, than that found from ex-
periment �19 MPa� �22�, the experimental Pcr is significantly un-
derestimated and cr is considerably overestimated. Therefore, it
is suggested that one should be careful in choosing a proper value
of � f for a cohesive law.

5 Discussions and Conclusions
The current work develops a new analytical approach that can

consider both crack initiation and propagation process for bilinear
cohesive laws. In the current model, the concept of extended crack
length �characteristic length l� is no longer required. The local
deformation beyond crack tip is modeled by a more natural ap-
proach, which does not require that all deformations should be
simultaneously equal to zero at the location of the characteristic
length l beyond the crack tip. This is the first natural boundary
condition based solution for bilinear cohesive laws under peel
load, instead of the enforced boundary conditions. One of the
features of the current solution is that the local deformation and
interfacial stress distribution can be simply and explicitly obtained
with the determined remote peel load P. Another attractive feature
of the present solution is that the crack initiation process can be
obtained. The crack initiation process as well as its actual stress
and damage distribution beyond the crack tip may be very impor-

Fig. 9 Evolution of softening and elastic zone as a function of
the remote peel load P

Fig. 10 Effect of interfacial stiffness ratio K on local deforma-
tion beyond crack tip when crack tip separation �=�f at the
initial crack length a=50 mm

Fig. 11 Effect of interfacial stiffness ratio K on local interfacial
stress beyond crack tip when crack tip separation �=�f at the
initial crack length a=50 mm

Fig. 12 Effect of maximum interfacial stress �f on the critical
load and loadline displacement at initial crack length a
=50 mm
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tant for the cyclic loading conditions and for understanding frac-
ture of materials and debonding of adhesively bonded joints. From
the comparison with numerical results, it can be seen that the
nonlinear response during the ascending branch of loading is ac-
curately captured. Although the local deformation and stress dis-
tribution with different interfacial stiffness ratio K vary signifi-
cantly, the rotation �0 at the crack tip seems very close. This might
be helpful in explaining the high insensitivity of the remote peel
load P to the details of the shape of the cohesive law, as con-
cluded by previous studies. This is because for identical crack tip
rotation �0 and toughness 
, the remote peel load must be the
same �23�.

The parametric study also indicates that after the crack initia-
tion process, the local deformation and stress distribution remain
relatively stable during the crack propagation stage if one assumes
that the cohesive law and toughness keep unchanged during the
entire process. However, the parametric study indicates that the
effect of � f on the peel load P and loadline deflection is different.
When the maximum interfacial stress � f is smaller than a certain
level, the effect of � f on the peel load P and loadline deflection 
can be very significant.
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On a Screw Dislocation
Interacting With Two Viscous
Interfaces
We investigate a screw dislocation interacting with two concentric circular linear viscous
interfaces. The inner viscous interface is formed by the circular inhomogeneity and the
interphase layer, and the outer viscous interface by the interphase layer and the un-
bounded matrix. The time-dependent stresses in the inhomogeneity, interphase layer, and
unbounded matrix induced by the screw dislocation located within the interphase layer
are derived. Also obtained is the time-dependent image force on the screw dislocation due
to its interaction with the two viscous interfaces. It is found that when the interphase
layer is more compliant than both the inhomogeneity and the matrix, three transient
equilibrium positions (two are unstable and one is stable) for the dislocation can coexist
at a certain early time moment. If the inhomogeneity and matrix possess the same shear
modulus, and the characteristic times for the two viscous interfaces are also the same, a
fixed equilibrium position always exists for the dislocation. In addition, when the inter-
phase layer is stiffer than the inhomogeneity and matrix, the fixed equilibrium position is
always an unstable one; on the other hand, when the interface layer is more compliant
than the inhomogeneity and matrix, the nature of the fixed equilibrium position depends
on the time: the fixed equilibrium position is a stable one if the time is below a critical
value, and it is an unstable one if the time is above the critical value. In addition, a
saddle point transient equilibrium position for the dislocation can also be observed under
certain conditions. �DOI: 10.1115/1.3112743�

Keywords: three-phase fibrous composite, viscous interface, screw dislocation, image
force, transient equilibrium position

1 Introduction
It is well known that the interphase layer between the fiber and

the surrounding matrix exerts a significant influence on the local
and overall mechanical behaviors of fibrous composites �1–3�. In
earlier modeling attempts �1–3�, the interphase layer was assumed
to be perfectly bonded to the fiber and the surrounding matrix, i.e.,
all the tractions and the displacements are continuous across the
interfaces between two different bonded phases. However, at the
microscopic level, the interface between two different bonded
phases is generally not a perfect one but is with waviness or steps.
At elevated temperatures, diffusional transport becomes important
on these rough interfaces due to the differences in the normal
tractions that are present along the rough interfaces �4,5�. It was
suggested �4–8� that the microscopically mass diffusion-
controlled mechanism can be macroscopically described by the

linear law for a viscous interface: �̇=� /�, where �̇ is the sliding
velocity �i.e., the differentiation of the relative sliding with respect
to time t�, � is the interfacial shear stress, and � is the interfacial
viscosity. Recently, the influence of the interfacial viscosity on the
mechanical behaviors of composite has been addressed �see, for
example, Refs. �9–12��. In addition, it was recently verified that
the heterostructures in which composition/doping are modulated
at the nanometer scale can be realized in core-shell nanowires
�13�. If these core-shell nanowires are then reinforced in a metal
matrix, then the three-phase cylindrical model, which will be stud-
ied in this research, becomes more relevant.

The objective of this research is to incorporate the Newtonian

viscosity into the inner interface between the fiber and interphase
layer and the outer interface between the interphase layer and the
matrix. More specifically, we investigate in this work a screw
dislocation in an annular interphase layer of uniform thickness
bonded through Newtonian viscous interfaces to a circular inho-
mogeneity and to the surrounding unbounded matrix. It was re-
cently observed that it is possible to find a transient equilibrium
position for a screw dislocation interacting with a circular viscous
interface �11�. Then it is expected that some more complex and
more interesting phenomena may exist when a screw dislocation
interacts with not one but two nearby viscous interfaces. Due to
the fact that we consider two viscous interfaces, then it is only
possible to arrive at series form solutions for this interaction prob-
lem. This paper is structured as follows. In Sec. 2, we derive the
time-dependent stress field induced by the screw dislocation by
means of the complex variable method. It is observed that the
unknowns are determined by solving a decoupled set of state-
space equations. In Sec. 3, we first obtain an expression for the
time-dependent image force on the dislocation due to its interac-
tion with the two nearby viscous interfaces; then we calculate and
discuss in detail the time-dependent image force, with the focus
on finding the possible transient equilibrium positions for the dis-
location on which the image force is zero at a certain moment.

2 Formulation
In this section, we will analyze the time-dependent stress field

associated with a three-phase circular inhomogeneity with two
concentric circular linear viscous interfaces, as shown in Fig. 1.
The linearly elastic materials occupying the inhomogeneity, the
interphase layer, and the matrix are assumed to be homogeneous
and isotropic with the associated shear moduli �1, �2, and �3,
respectively. We represent the matrix by the domain S3 :x2+y2

�b2 and assume that the circular inhomogeneity occupies the
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circular region S1 :x2+y2�a2, and the interphase layer occupies
the annulus S2 :a2�x2+y2�b2. Furthermore at time t=0, a screw
dislocation with Burgers vector bz is introduced into the inter-
phase layer S2 and fixed at �x0, 0�, �a�x0�b� on the positive real
axis. Throughout this paper, the subscripts 1, 2, and 3 �or the
superscripts �1�, �2�, and �3�� are used to identify the quantities in
S1, S2, and S3, respectively. In this research, the inertia force in the
inhomogeneity, the interphase layer, and the matrix is ignored in
order to simplify the analysis involved. As such, the out-of-plane
displacement w, the stress components �zx and �zy in the Carte-
sian coordinate system, and the stress components �zr and �z	 in
the polar coordinate system can be expressed in terms of a single
analytic function f�z , t� as �14�

w = Im�f�z,t��

�zy + i�zx = �f��z,t�

�z	 + i�zr = �ei	f��z,t� �1�

where � is the shear modulus, t is the real time variable while z
=x+ iy=rei	 is the complex variable, and f��z , t�=�f�z , t� /�z. The
appearance of the real time variable t in the analytic function f is
due to the influence of the two viscous interfaces at r=a and r
=b.

The boundary conditions on the two linear viscous interfaces
r=a and r=b can be described by

�zr
�1� = �zr

�2� = �a�ẇ�2� − ẇ�1��, r = a, t 
 0

�zr
�3� = �zr

�2� = �b�ẇ�3� − ẇ�2��, r = b, t 
 0 �2�

where an overdot denotes the derivative with respect to the time t,
and �a and �b are the non-negative viscosity coefficients for the
two interfaces, respectively.

In view of Eq. �1�, the above set of boundary conditions on the
two viscous interfaces can also be expressed in terms of three
analytic functions—f1�z , t� defined in the circular inhomogeneity,
f2�z , t� defined in the interphase layer, and f3�z , t� defined in the
unbounded matrix as

�1f1
+�z,t� + �1 f̄1

−�a2

z
,t� = �2f2

−�z,t� + �2 f̄2
+�a2

z
,t� �3a�

ḟ2
−�z,t� − ḟ̄2

+�a2

z
,t� − ḟ1

+�z,t� + ḟ̄1
−�a2

z
,t�

=
�1

a�a
	zf1�

+�z,t� −
a2

z
f̄1�

−�a2

z
,t�
, �z� = a �3b�

and

�2f2
+�z,t� + �2 f̄2

−�b2

z
,t� = �3f3

−�z,t� + �3 f̄3
+�b2

z
,t� �4a�

ḟ3
−�z,t� − ḟ̄3

+�b2

z
,t� − ḟ2

+�z,t� + ḟ̄2
−�b2

z
,t�

=
�3

b�b
	zf3�

−�z,t� −
b2

z
f̄3�

+�b2

z
,t�
, �z� = b �4b�

where the superscript “+” denotes approaching the interface from
inside, while the superscript “�” denotes approaching the inter-
face from outside.

We first consider the inner viscous interface. It follows from
Eq. �3a� for the continuity condition of traction across the inner
viscous interface �z�=a that

f2�z,t� =
�1

�2
f̄1�a2

z
,t� +

1

�2
�
n=1

+�

�An�t�zn − a2nAn�t�z−n�

+
bz

2
ln�z − x0� −

bz

2
ln� z − a2/x0

z
�, a � �z� � b

f̄2�a2

z
,t� =

�1

�2
f1�z,t� −

1

�2
�
n=1

+�

�An�t�zn − a2nAn�t�z−n�

−
bz

2
ln�z − x0� +

bz

2
ln� z − a2/x0

z
�,

a2

b
� �z� � a

�5�

where An�t� �n=1,2 , . . . ,+�� are real but time-dependent coeffi-
cients to be determined.

Substituting Eq. �5� into Eq. �3b�, we obtain the following:

�1

a�1
zf1�

+�z,t� +
�1 + �2

�2
ḟ1

+�z,t� −
2

�2
�
n=1

+�

Ȧn�t�zn =
�1

a�1

a2

z
f̄1�

−�a2

z
,t�

+
�1 + �2

�2
ḟ̄1

−�a2

z
,t� −

2

�2
�
n=1

+�

a2nȦn�t�z−n, �z� = a �6�

Apparently the left-hand side of Eq. �6� is analytic and single
valued within the circle �z�=a, while the right-hand side of Eq. �6�
is analytic and single-valued outside the circle including the point
at infinity. By employing Liouville’s theorem, the left- and right-
hand sides should be identically zero. Consequently, we arrive at
the following inhomogeneous first-order partial differential equa-
tion for f1�z , t�:

zf1��z,t� + t1 ḟ1�z,t� =
2a�a

�1�2
�
n=1

+�

Ȧn�t�zn, �z� � a �7�

where t1=a�a��1+�2� /�1�2
0 is the characteristic time for the
inner viscous interface �z�=a.

Equation �7� can be easily solved by using power series expan-
sion as

f1�z,t� =
1

�1
�
n=1

+�

Bn�t�zn, �z� � a �8�

where Bn�t� is related to An�t� through the following:

Fig. 1 A screw dislocation in a three-phase circular inhomo-
geneity with two concentric circular linear viscous interfaces
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nBn�t� + t1Ḃn�t� = t1�1Ȧn�t� �n = 1,2, . . . ,+ �� �9�

with �1=2�1 / ��1+�2� �0��1�2� being a measure of the rela-
tive stiffness of the inhomogeneity with respect to the interphase
layer.

Once we obtain f1�z , t�, it is not difficult to arrive at the expres-
sion of f2�z , t� as

f2�z,t� =
1

�2
�
n=1

+�

a2nBn�t�z−n +
1

�2
�
n=1

+�

�An�t�zn − a2nAn�t�z−n�

−
bz

2
ln� z − a2/x0

z
� +

bz

2
ln�z − x0�, a � �z� � b

�10�
Next we address the outer viscous interface. It follows from Eq.

�4a� for the continuity condition of traction across the outer vis-
cous interface �z�=b that

f2�z,t� =
�3

�2
f̄3�b2

z
,t� +

1

�2
�
n=1

+�

�Cn�t�zn − b2nCn�t�z−n�

+
bz

2
ln�z − x0� −

bz

2
ln�z − b2/x0� +

bz

2

�3

�2
ln z,

a � �z� � b

f̄2�b2

z
,t� =

�3

�2
f3�z,t� −

1

�2
�
n=1

+�

�Cn�t�zn − b2nCn�t�z−n�

−
bz

2
ln�z − x0� +

bz

2
ln�z − b2/x0� −

bz

2

�3

�2
ln z,

b � �z� �
b2

a
�11�

where Cn�t� �n=1,2 , . . . ,+�� are real but time-dependent coeffi-
cients to be determined.

Substituting Eq. �11� into Eq. �4b�, we obtain the following:

�2 + �3

�2
ḟ̄3

+�b2

z
,t� −

�3

b�b

b2

z
f̄3�

+�b2

z
,t� +

2

�2
�
n=1

+�

Ċn�t�zn

=
�2 + �3

�2
ḟ3

−�z,t� −
�3

b�b
zf3�

−�z,t� +
2

�2
�
n=1

+�

b2nĊn�t�z−n, �z� = b

�12�
Apparently the left-hand side of Eq. �12� is analytic and single

valued within the circle �z�=b, while the right-hand side of Eq.
�19� is analytic and single-valued outside the circle including the
point at infinity. Again, by employing Liouville’s theorem, the
left- and right-hand sides should be identically zero. Conse-
quently, we arrive at the following inhomogeneous first-order par-
tial differential equation for f3�z , t�:

zf3��z,t� − t2 ḟ3�z,t� =
2b�b

�2�3
�
n=1

+�

b2nĊn�t�z−n, �z� 
 b �13�

where t2=b�b��2+�3� /�2�3
0 is the characteristic time for the
outer viscous interface �z�=b.

Equation �13� can also be solved by using power series expan-
sion as

f3�z,t� =
bz

2
ln z +

1

�3
�
n=1

+�

Dn�t�z−n, �z� 
 b �14�

where Dn�t� is related to Cn�t� through

− nDn�t� − t2Ḋn�t� = t2�2b2nĊn�t� �n = 1,2, . . . ,+ �� �15�

with �2=2�3 / ��3+�2� �0��2�2� being a measure of the rela-
tive stiffness of the matrix with respect to the interphase layer. It is
of interest to observe from the above expression that as t→�
Dn���=0. Consequently, f3�z ,��= �bz /2�ln z, which is the com-
plex potential for a screw dislocation with Burgers vector bz
lodged within a circular hole of radius b.

Once we obtain f3�z , t�, it is not difficult to arrive at another
expression of f2�z , t� as

f2�z,t� =
1

�2
�
n=1

+�

b−2nDn�t�zn +
1

�2
�
n=1

+�

�Cn�t�zn − b2nCn�t�z−n�

−
bz

2
ln�z − b2/x0� +

bz

2
ln�z − x0�, a � �z� � b �16�

Apparently the two expressions �10� and �16� for f2�z , t� should be
exactly the same, from which we arrive at the following relations:

�
n=1

+�

a2nBn�t�z−n − �
n=1

+�

a2nAn�t�z−n + �
n=1

+�

b2nCn�t�z−n

=
�2bz

2
ln� z − a2/x0

z
�

�
n=1

+�

b−2nDn�t�zn − �
n=1

+�

An�t�zn + �
n=1

+�

Cn�t�zn

=
�2bz

2
ln�z − b2/x0�, a � �z� � b �17�

Therefore, from Eq. �17� the following set of algebraic equations
for the unknowns can be obtained:

Bn�t� = An�t� − �b

a
�2n

Cn�t� −
�2bz

2

x0
−n

n
�n = 1,2, . . . ,+ ��

Dn�t� = b2nAn�t� − b2nCn�t� −
�2bz

2

x0
n

n
�n = 1,2, . . . ,+ ��

�18�
Furthermore, using the relationships in Eq. �18�, Eqs. �9� and

�15� can be expressed, in terms of An�t� and Cn�t�, into the fol-
lowing standard state-space equations:

t1��1 − 1� t1�b

a
�2n

t2 t2��2 − 1�
�	Ȧn�t�

Ċn�t�

 = n 1 − �b

a
�2n

− 1 1
�	An�t�

Cn�t� 

+

�2bz

2
	 − x0

−n

x0
nb−2n 
 �n = 1,2, . . . ,+ �� �19�

The general solutions to An�t� and Cn�t� can be obtained from
the above equation as

An�t� = k1
�n��11

�n�e−�1
�n�t + k2

�n��12
�n�e−�2

�n�t + �1
�n�

Cn�t� = k1
�n��21

�n�e−�1
�n�t + k2

�n��22
�n�e−�2

�n�t + �2
�n� �n = 1,2, . . . ,+ ��

�20�

where �1
�n� ,�2

�n� ,�11
�n� ,�12

�n� ,�21
�n� ,�22

�n� ,�1
�n� ,�2

�n� are given by

�1
�n�

n
=

c2
�n� + �c2

�n�2 − 4c1
�n�c3

�n�

2c1
�n� 
 0,

�2
�n�

n
=

c2
�n� − �c2

�n�2 − 4c1
�n�c3

�n�

2c1
�n� 
 0 �21a�
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�11
�n� = �1

�n�t2��2 − 1� + n, �21
�n� = n − �1

�n�t2

�12
�n� = �2

�n�t2��2 − 1� + n, �22
�n� = n − �2

�n�t2 �21b�

�1
�n� =

�2bz�x0
na−2n − x0

−n�
2nc3

�n� , �2
�n� =

�2bz�x0
nb−2n − x0

−n�
2nc3

�n� �21c�

with

c1
�n� = t1t2�c3

�n� − �1�2 + �1 + �2� ,

c2
�n� = t1�1 + t2�2 + c3

�n��t1 + t2� ,

c3
�n� = �b

a
�2n

− 1 �22�

and k1
�n� and k2

�n� are related to the initial conditions of An�t� and
Cn�t� through the following:

k1
�n� =

�22
�n�An�0� − �12

�n�Cn�0� + �12
�n��2

�n� − �22
�n��1

�n�

�11
�n��22

�n� − �12
�n��21

�n� �n = 1,2, . . . ,+ ��

k2
�n� =

�11
�n�Cn�0� − �21

�n�An�0� + �21
�n��1

�n� − �11
�n��2

�n�

�11
�n��22

�n� − �12
�n��21

�n� �n = 1,2, . . . ,+ ��

�23�

At the initial moment t=0 when the screw dislocation is just
introduced into the interphase layer, the displacement across the
viscous interface has no time to experience any jump �15�. Con-
sequently, both the inner interface r=a and the outer interface r
=b are perfect at t=0, i.e., the traction and displacement are both
continuous across the two interfaces at the initial moment t=0.
Then we can easily obtain the initial values of An�t� and Cn�t� as

An�0� =
�2bz�1 − �2��x0

na−2n − �1 − �1�x0
−n�

2n�c3
�n� + �1 + �2 − �1�2�

,

Cn�0� =
�2bz�1 − �1���1 − �2�x0

nb−2n − x0
−n�

2n�c3
�n� + �1 + �2 − �1�2�

�n = 1,2, . . . ,+ ��

�24�

It is observed that, when �1=�2=0, we have �1
�n�=An�0� and

�2
�n�=Cn�0�. This fact is easy to understand. It follows from Eq.

�20� that An���=�1
�n� and Cn���=�2

�n�. When t→� the two viscous
interfaces become traction-free surfaces, while traction-free sur-
faces can also be obtained by assuming the shear moduli of the
inhomogeneity and the matrix to be zero ��1=�2=0�. Now the
unknowns An�t� and Cn�t� have been uniquely determined. The
other unknowns Bn�t� and Dn�t� can then be uniquely obtained
from Eq. �18�.

The time-dependent stresses in the composite induced by the
screw dislocation can then be given by

�zy
�1� + i�zx

�1� = �
n=1

+�

nBn�t�zn−1, �z� � a �25�

�zy
�2� + i�zx

�2� = �
n=1

+�

n�An�t��zn−1 + a2nz−n−1� − a2nBn�t�z−n−1�

−
�2bz

2

a2

z�x0z − a2�
+

�2bz

2

1

z − x0
, a � �z� � b

�26�

�zy
�3� + i�zx

�3� = − �
n=1

+�

nDn�t�z−n−1 +
�3bz

2z
, �z� 
 b �27�

It is obvious that the stresses are singular at the location of the
screw dislocation z=x0.

3 Time-Dependent Image Force on the Screw Disloca-
tion

By employing the Peach–Koehler formula �see, for example,
Refs. �16,17��, the time-dependent image force on the screw dis-
location due to its interaction with the two viscous interfaces can
be finally obtained as

Fx�t� = bz�
n=1

+�

n�k1
�n���11

�n�x0
n−1 + �21

�n�b2nx0
−n−1�exp�− �1

�n�t� + k2
�n�

���12
�n�x0

n−1 + �22
�n�b2nx0

−n−1�exp�− �2
�n�t� + x0

n−1�1
�n�

+ b2nx0
−n−1�2

�n�� �a � x0 � b� �28�

where Fx is the x component of the image force while Fy =0.
During calculation the infinite series in Eq. �28� is truncated at a
large integer n=N to get sufficiently accurate result.

Apparently it follows from Eq. �28� that

Fx�0� = bz�
n=1

+�

n�x0
n−1An�0� + b2nx0

−n−1Cn�0�� �29�

is the image force on the screw dislocation interacting with two
perfect interfaces, while

Fx��� = bz�
n=1

+�

n�x0
n−1�1

�n� + b2nx0
−n−1�2

�n�� = bz�
n=1

+�

n�x0
n−1An���

+ b2nx0
−n−1Cn���� �30�

is the image force on the screw dislocation interacting with two
traction-free surfaces. In addition, it can be strictly proved from
Eq. �28� that when the inhomogeneity and the matrix possess the
same shear modulus, i.e., �1=�2=�, and the characteristic times
for the two viscous interfaces are exactly the same, i.e., t1= t2

= t0, then the fixed location x0=�ab is always an equilibrium po-
sition for the dislocation at any time, i.e., Fx�t��0 when x0

=�ab. Apparently when the interphase layer is stiffer than both
the inhomogeneity and the matrix, i.e., ��1, the fixed equilib-
rium position is always an unstable one. On the other hand, when
the interphase layer is more compliant than both the inhomogene-
ity and the matrix, i.e., �
1, the nature of the fixed equilibrium
position is dependent on time. In the following calculations, we
truncate the series in Eq. �28� at n=360 to obtain a result with a
relative truncation error less than 0.01%. We illustrate in Fig. 2 the

Fig. 2 The normalized time-dependent image force F̃
=aFx /�2bz

2 on the screw dislocation at five different times t̃
= t / t0=0.005, 0.01, 0.02, 0.0329, 0.1 with t1= t2= t0, �1=�2=�
=1.8, and b=1.1a
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normalized image force F̃=aFx /�2bz
2 at five different times t̃

= t / t0=0.005, 0.01, 0.02, 0.0329, 0.1 with �=1.8
1 and b
=1.1a. It is clearly observed from Fig. 2 that �i� x0=�ab
=1.0488a is always an equilibrium position, and this fixed equi-
librium position is a stable one when t̃�0.0329 and it is an un-
stable one when t̃
0.0329; �ii� two unstable and one stable tran-
sient equilibrium positions for the dislocation coexist when t̃
�0.0329, while only one fixed equilibrium position exists when
t̃
0.0329. Next we consider the more general case in which �1
��2 �for simplification we still assume that t1= t2= t0�. Figure 3

demonstrates the normalized image force F̃=aFx /�2bz
2 at four

different times t̃= t / t0=0.005, 0.0109, 0.02, 0.1 with �1=1.8, �2
=1.5, and b=1.1a. It is observed from Fig. 3 that �i� two unstable
and one stable transient equilibrium positions for the dislocation
coexist when t̃�0.0109, �ii� a saddle point �neither stable nor
unstable� transient equilibrium position at x0�1.078a and another
unstable transient equilibrium position coexist when t̃=0.0109,
and �iii� only one single unstable transient equilibrium position
exists when t̃
0.0109 and the single unstable transient equilib-
rium position moves toward x0=�ab=1.0488a as the time
evolves. As a comparison to Fig. 3, Fig. 4 demonstrates the nor-

malized image force F̃=aFx /�2bz
2 at four different times t̃= t / t0

=0.005, 0.0109, 0.02, 0.1 with �1=1.5, �2=1.8, and b=1.1a. It is
observed that Fig. 4 has very similar features as Fig. 3. For in-

stance, when t̃=0.0109 we also observe from Fig. 4 a saddle point
transient equilibrium position at x0�1.021a. The above results
indicate that the situations for the transient equilibrium positions
are rather complex and are dependent on �1 and �2 and the chosen
time. We show in Fig. 5 the different situations for the transient
equilibrium positions of the dislocation at a certain fixed normal-
ized time t̃= t / t0 with the assumption that t1= t2= t0 and b=1.1a. It
is observed from Fig. 5 that �i� when ��1 ,�2� is just located on the
curve for a certain normalized time t̃, a saddle point and another
unstable transient equilibrium positions coexist at this normalized
time; �ii� when ��1 ,�2� is located within the region formed by the
curve for a certain fixed normalized time t̃ and the two straight
lines �1=2 and �2=2, two unstable and one stable transient equi-
librium positions for the dislocation coexist at this normalized
time; �iii� otherwise, for other combinations of ��1 ,�2� only one
unstable transient equilibrium position exists at this normalized
time; �iv� if ��1 ,�2� is on the curve for a certain normalized time
t̃, then ��2 ,�1� is also on this curve; and �v� it is only possible to
find a single unstable transient equilibrium position if t̃
 t̃c
=0.03983. The results in Fig. 5 imply that there exist simulta-
neously three transient equilibrium positions if the interphase
layer is more compliant than both the inhomogeneity and the ma-
trix and the time chosen is fast enough. Figure 5 also indicates
that there exists only one unstable transient equilibrium position if
the time chosen is above a critical value no matter how stiff the
inhomogeneity and the matrix are. Here it is of interest to look
into the dependence of t̃c on the thickness of the interphase layer
in more detail with the assumption that t1= t2= t0. We present in
Fig. 6 the variation in t̃c as a function of the relative thickness
�b−a� /a of the interphase layer. It is observed from Fig. 6 that �i�
t̃c is an increasing function of �b−a� /a and �ii� t̃c approaches zero
as the interphase layer is infinitely thin �i.e., b→a�, and it ap-
proaches ln 2=0.6931 as the interphase layer is infinitely thick
�i.e., �b−a� /a→��. It is of interest to notice that the asymptotic
behavior of t̃c→ ln 2 as �b−a� /a→� is in agreement with our
previous exact result for a single viscous interface �11�. The re-
sults in Fig. 6 imply that it is only possible to find a single un-
stable transient equilibrium position if t̃
 ln 2 no matter how
thick the interphase layer is.

Fig. 3 The normalized time-dependent image force F̃
=aFx /�2bz

2 on the screw dislocation at four different times t̃
= t / t0=0.005, 0.0109, 0.02, 0.1 with t1= t2= t0, �1=1.8, �2=1.5, and
b=1.1a

Fig. 4 The normalized time-dependent image force F̃
=aFx /�2bz

2 on the screw dislocation at four different times t̃
= t / t0=0.005, 0.0109, 0.02, 0.1 with t1= t2= t0, �1=1.5, �2=1.8, and
b=1.1a

Fig. 5 The different situations for the transient equilibrium po-
sitions of the dislocation at a certain fixed normalized time t̃
= t / t0 with t1= t2= t0 and b=1.1a
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4 Conclusions

We investigated the problem associated with a screw disloca-
tion interacting with two concentric linear viscous interfaces by
means of the complex variable method. The time-dependent stress
field and image force acting on the dislocation due to its interac-
tion with the two viscous interfaces were derived. Our results
demonstrated that three situations are possible for the transient
equilibrium positions depending on the relative stiffness among
the three material phases and the time chosen: �i� two unstable and
one stable transient equilibrium positions coexist, �ii� a saddle
point and an unstable transient equilibrium positions coexist, and
�iii� only one single unstable transient equilibrium position exists.
The image force as a function of these parameters was presented
numerically to illustrate these features, along with the criterion
diagrams for determining the specific situation for the transient
equilibrium positions.
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Confined Thin Film Delamination
in the Presence of Intersurface
Forces With Finite Range and
Magnitude
A circular membrane clamped at the periphery is allowed to adhere to or to delaminate
from a planar surface of a cylindrical punch in the presence of intersurface forces with
finite range and magnitude. Assuming a uniform disjoining pressure within the cohesive
zone at the delamination front, the adhesion-delamination mechanics is obtained by a
thermodynamic energy balance. Interrelations between the instantaneous applied load,
punch displacement, and contact circle, and the resulting critical thresholds of “pinch-
off,” “pull-off,” and “pull-in” are derived from the first principles. Two limiting cases
are obtained: (i) intersurface force with long range and small magnitude in reminiscence
of the classical Derjaguin–Muller–Toporov (DMT) model and (ii) short range and large
magnitude alluding to the Johnson–Kendall–Roberts (JKR) model. The DMT-JKR tran-
sitional behavior has significant impacts on adhesion measurements, micro-
electromechanical systems, and life-sciences. �DOI: 10.1115/1.3112745�

Keywords: thin film adhesion, delamination, surface force, disjoining pressure, cohesive
zone

1 Introduction
In the presence of intersurface interactions, such as electrostat-

ics and van der Waals, a solid surface might compel or repel a
freestanding membrane depending on the sign, magnitude, and
range of the intersurface forces. Once the adherends are in con-
tact, an external force is necessary to separate them and to retain
mechanical equilibrium throughout. A thorough understanding of
the coupled action of surface forces and applied load associated
with deformation of the elastic bodies is thus the key to charac-
terize a membrane-substrate interface. The mechanical behavior
and adhesion-delamination mechanics of thin membranes has sig-
nificant impacts on many branches of life-sciences, micro-
electromechanical systems �MEMSs� and nanotechnology. For in-
stance, �i� two or more apposing biological cells adhere to form
multicell aggregates and ultimately tissues �1–3�, �ii� nanostruc-
tures of trusses and membranes collapse in the presence of high
humidity and strong surface forces �4,5�, �iii� micro- and nano-
electromechanical systems �MEMS/NEMS� involving electro-
static driven bridges and diaphragms fail in the presence of strong
stiction �6,7�, and �iv� diminished adhesion of the protective en-
capsulating membranes limits the reliability and life span of elec-
tronic packages �8�.

Adhesion between two solid spheres or asperities has been un-
der intensive investigations in the last few decades ever since the
now-celebrated Johnson–Kendall–Roberts �JKR� and Derjaguin–
Muller–Toporov �DMT� models were formulated in the 1970s
�9–11�. The two ostensibly contradictory models represent the two
extreme limits of a universal adhesion model. While JKR is ap-
plicable to surface forces with a large magnitude and virtually
zero range, DMT is valid for small magnitude and long range. The
idea of cohesive zone with intermediate surface force magnitude
and range was first developed conceptually by Dugdale, furnished
by the mathematically rigorous model by Barenblatt, and shown

to fit the JKR-DMT transition by Maugis �12�. The equivalence of
fracture in brittle materials was demonstrated by a number of
elegant papers �13–15�. Voluminous experimental verifications of
the models can be found in the literature. It is important to note
that these celebrated theories in solid-solid adhesion are not quite
applicable to thin membranes.

We have lately introduced a “punch” test to investigate thin film
adhesion. Figure 1�a� shows a film clamped by two identical rings
forming a freestanding diaphragm. A flat-ended cylindrical punch
with a diameter fitting to the rings is brought to adhesive contact
with the membrane. When a tensile force is applied to the punch
in a displacement-controlled manner, a circular delamination is
driven radially inward into the punch-film interface until pull-off
occurs when the film spontaneously detaches from the substrate.
The method is especially useful in probing local adhesion, since
the delamination is confined to the diaphragm dimension. We have
earlier derived the adhesion-delamination mechanics for the JKR-
limit, including mixed membrane deformation mode of plate-
bending and membrane-stretching �16�, coupled tensile/
compressive residual stresses and interfacial adhesion �17�, and
progressively increasing residual membrane stress �18�. Experi-
mental results in a variety of membranes of different materials and
thicknesses are shown to be consistent with the model �5,19�.

In this paper, we investigate the situation for surface forces with
intermediate and fixed magnitude and range, and demonstrate how
the universal model approaches the limits of JKR and DMT. The
quasistatic delamination mechanics is chosen to be based on a
thermodynamic energy minimization, though other methods, such
as balance of stress intensity factors, are available in the literature
�20�.

2 Theory
Figures 1�a� and 1�b� show the schematic of an isotropic mem-

brane clamped at the periphery and in adhesion contact with the
planar surface of a cylindrical punch. All dimensional and dimen-
sionless variables are listed and defined in Table 1. In essence, all
horizontal dimensions are scaled by the membrane radius, and
vertical dimensions by the membrane thickness. As the punch
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moves away from the plane of the nondeformed membrane, the
resulting tensile stress causes the membrane to delaminate from
the substrate and the contact circle shrinks. The long-range sur-
face force acting across the membrane-substrate gap gives rise to
a cohesive zone at the delamination front. The cohesive edge di-
vides the freestanding annulus into an inner region, where the
disjoining pressure acts �c�r�b and 0� �w0−w��y�, and an
outer region, where the intersurface force is beyond reach �b�r
�1 and y� �w0−w��w0�. A few assumptions are taken as fol-
lows: �i� the thin membrane has negligible flexural rigidity and
thus only membrane-stretching prevails, �ii� an average strain with
equal radial and tangential stresses, �r=�t, is assumed, �iii� the
deformed annulus subtends a small angle to the nondeformed
plane ���0�, and �iv� residual stress is ignored.

2.1 The Attractive Surface Force Law. The Lennard-Jones
potential is the most common intersurface force law adopted in
the adhesion literature. To solve for the membrane profile, how-
ever, requires a mathematically involved self-consistent method or
an appropriate Green’s function. Figure 2�a� shows the classical
force law, which in this paper is replaced by a uniform attractive
disjoining pressure with a finite range �21�. The approximation is
expressed as a Heaviside step function, similar to the classical
work by Dugdale–Barenblatt–Maugis �12,22�

��w� = p within the cohesive zone, 0 � �w0 − w� � y

=0 without the cohesive zone, y � �w0 − w� � w0 �1�

The area under the curve is known as the adhesion energy, i.e.,
�= py, which is a constant for a specific interface under consider-
ation. Without loss of generality, �=1 hereafter. The JKR-limit
�p→� and y→0� is shown against the DMT-limit �p→0 and y
→��, whereas the product of p and y remains identical in both
cases. Equation �1� describes the surface interactions as function
of intersurface separation, though it can also be translated to the
horizontal membrane-punch interface as shown in Fig. 2�b�.
Within the contact circle �r�c�, the membrane is stress free. Im-
mediately behind the delamination front is the cohesive zone �c
�r�b�. The external load, F= p�b2−c2�, maintains mechanical

Fig. 1 „a… Schematic of a clamped membrane adhered to pla-
nar punch surface. „b… Drawing in normalized coordinates and
variables.

Table 1 Normalized coordinates and variables

Physical parameters �bold� Normalized parameters

Geometrical
parameters

r=radial distance �m�
r =

r

a
,

w =
w

h
, w0 =

w0

h

c =
c

a
, b =

b

a

w=deformation profile �m�
w0=vertical displacement of punch �m�

a=radius of sample membrane �m�
c=radius of contact circle �m�
b=radius of cohesive edge �m�

h=membrane thickness �m�

Material
parameters

�=Poisson’s ratio
E=elastic modulus �N m−2�

�=tensile membrane stress �N m−2�
�=interfacial adhesion energy �J m−2�

p=disjoining pressure �N m−2�
y=surface force range �m�

s = �1/2�12�1 − ��a2

Eh2 �1/2

,

� = ��6�1 − ��a4

Eh5 � ,

p = p�6�1 − ��a4

Eh4 � ,

y =
y

h

Mechanical
loading

F=applied external force �N�
U=energy terms �J� F = F�6�1 − ��a2

�Eh4 �
U = U�6�1 − ��a2

�Eh5 �
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equilibrium. Beyond the cohesive edge �b�r�1� the outer annu-
lus is under the influence of membrane stress only. Classical linear
elastic fracture mechanics in the JKR context requires the vanish-
ingly small cohesive zone to maintain its dimension and to trans-
late with the delamination front upon loading �23�. In this paper,
the cohesive zone is allowed to vary its width along the
membrane-substrate interface. The DMT-limit is loosely defined
here to be the situation when the entire freestanding annulus is
under the influence of the disjoining pressure. The cohesive edge
extends to the membrane periphery, and the cohesive zone is un-
derdeveloped �see Sec. 2.5�.

A schematic of the corresponding surface energy density is
shown in Fig. 2�c�. The JKR-limit is shown as a step function
dropping to zero at the contact edge. As the force range increases,
the energy drops to zero gradually over a finite range. The cohe-
sive zone is “fully developed.” In the DMT-limit, the cohesive
zone extends to the membrane edge �r=1�, the corresponding en-
ergy does not drop to zero, as shown, and the cohesive zone is
underdeveloped.

2.2 Elastic Equation Governing the Membrane Profile.
The external load applied to the punch is balanced by the disjoin-
ing pressure that acts on the membrane. The elastic equation can
be written as

− �h · �2w = p ⇒ − s2r
�w

�r
= p�r2 − c2� for c � r � b

�2�

− �h · �2w = F · 	�r� ⇒ − s2r
�w

�r
= p�b2 − c2� for b � r � 1

where �2 is the Laplacian operator in cylindrical coordinates and
	�r� is a delta function denoting the applied load. The ostensible

singularity at r=0 never occurs since the contact circle never ap-
proaches zero, as will be shown later. Equation �2� can be solved
exactly

w

= �
p

2s2��b2 − r2� + b2 log	 1

b2
 − c2 log	 1

r2
� for c � r � b

F

2s2 log	 1

r2
 for b � r � 1�
�3�

Figure 3 shows a typical normalized membrane profile, w�r�, for
c=0.3 and a range of p. The cohesive edge at r=b is continuous
and differentiable in all cases, and the cohesive zone always pos-
sesses a “cusp” geometry at the delamination front, ��w /�r�r=c

=0. Beyond the cohesive zone, the membrane profile is governed
by the classical log�1 /r2� term typical of membranes. The punch
displacement is given by

w0 = w�r = c� =
p

2s2��b2 − c2� + b2 log	 1

b2
 − c2 log	 1

c2
�
�4�

It is easy to show that the surface force range is

y = w0 − w�r = b� =
p

2s2��b2 − c2� + c2 log	 c2

b2
� �5�

2.3 Thermodynamic Energy Balance. There are two pos-
sible ways to drive delamination. The load-controlled configura-
tion requires the punch to be loaded by a fixed force �F
=constant�, while the displacement-controlled configuration re-
quires a fixed punch displacement �w0=constant�. The two modes
are equivalent in deriving the thermodynamic energy balance and
thus the delamination trajectory. We choose the latter. Total energy
of the membrane-substrate system is given by UT=UE−US, with
UE as the elastic energy stored in the membrane and US as the
surface energy to create new surfaces. For delamination to occur,
��UT /�c�w0=constant=0.

The elastic energy can be found as follows. Since the mechani-
cal response of a thin flexible membrane is always cubic with F

w0

3, UE=�F ·dw0= 1
4F ·w0. Alternatively, UE can be expressed

Fig. 2 „a… Lennard-Jones potential and the uniform disjoining
pressure approximation as function of intersurface separation
„w0−w…. „b… Disjoining pressure distribution and „c… surface en-
ergy density as function of radial distance in the membrane-
punch interface for a range of decreasing disjoining pressure.

Fig. 3 Membrane profile for fixed contact radius c=0.3 and a
range of disjoining pressure. The delamination front is shaped
as a cusp in all the curves and in the DMT-limit, besides the
JKR-limit.
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in terms of the membrane stress, UE=energy density�area,
where the energy density is s4 /24. The membrane stress is a com-
plicated function of radial distance from the membrane center. To
circumvent the involved mathematics, we assume an average
membrane strain, �= �1 /2���w /�r�2, as in our previous work �16�.
There are two equivalent alternatives to proceed. The first is to
average elastic strain over the entire overhanging annulus, and the
second is to take two separate average strains within and without
the cohesive edge. We choose the latter

s2 =�
6

b2 − c2
c

b
1

2
	 �w

�r

2

2rdr for c � r � b

6

1 − b2
b

1
1

2
	 �w

�r

2

2rdr for b � r � 1� �6a�

Substituting w in Eq. �3� into Eq. �6a�

s = ��
3p2

2�b2 − c2��3c4 − 4b2c2 + b4 + 2c4 log	b2

c2
��1/6

for c � r � b

�3p2�b2 − c2�2

1 − b2 log	 1

b2
�1/6

for b � r � 1� �6b�

The corresponding elastic energy is therefore given by

�7�

Substituting s in Eq. �6b� into Eq. �7�

UE =
3�3c4 − 4b2c2 + b4 + 2c4 log�b2/c2��2

2�b2 − c2��b2 − c2 − c2 log�b2/c2��4 y4

+
6

�1 − c2�log�1/b2�log�1/b2�
�y − w0�4 �8�

Derivation of the surface energy is quite different from the clas-
sical fracture mechanics approach because of the presence of
long-range surface forces. Here US comprises three parts: �i�
within the contact circle �r�c�, where US=�c2 is a maximum, �ii�
within the cohesive zone �c�r�b�, where US decreases to zero
at the cohesive edge, and �iii� beyond the cohesive edge �b�r
�1� where US=0. Mathematically,

�9�

A distinct characteristic here is that US is a function of w0 �c.f.
Fig. 2�c��. The total energy of the system and thus the delamina-
tion trajectory can now be determined by Eqs. �8� and �9�. The
DMT and JKR limits will be analyzed next, followed by the
DMT-JKR transition.

2.4 The JKR-Limit. The JKR-limit requires a zero force
range and infinite magnitude, i.e., the disjoining pressure is a delta
function around the contact edge, ��w�= p ·	�r−c�. The cohesive
zone width is zero �b=c�. The membrane profile �c.f. Eq. �3��
requires a sharp angle at the contact edge with ��w /�r�r=c− =0 and
��w /�r�r=c+ =−F /s2c, which is no longer differentiable. The cusp
geometry is lost �Fig. 3�. The upper and lower limits of the first
integral in Eq. �6a� merge, and the membrane stress is reduced to
the second integral only. The governing equations are summarized
as follows:

w =
F

2s2 log	 1

r2
 �10�

w0 =
F

2s2 log	 1

c2
 �11�

s = � 3F2

1 − c2 log	 1

c2
�1/6

�12�

UE =
6

�1 − c2�log�1/c2�log�1/c2�
w0

4 �13�

US = �c2 �14�

The constitutive relation without delamination is found by elimi-
nating s from Eqs. �11� and �12�

F =
24

�1 − c2��log�1/c2��2w0
3 �15�

The energy balance yields

w0 = � c2�1 − c2�2�log�1/c2��3

6�2 − 2c2 + c2 log�1/c2���1/4

�1/4 �16�

consistent with our earlier derivation �16�. Figure 4 shows the
mechanical response, F�w0�. In a load-controlled measurement,
delamination does not occur until F reaches a maximum at S with
Fmax=2.74636. An incremental increase in F then leads to spon-
taneous separation of membrane from substrate and the membrane
snaps. Since the instantaneous contact radius is nonzero with c
=1; the phenomenon is known as pull-off in the literature. Alter-
natively, in a displacement-controlled measurement, delamination
begins at S and continues along the path SRQP with a stable
monotonic decreasing contact radius. At P �F�=0.413994, w0

�

=0.562441, and c�=0.194545�, ��F /�w0�→�. Incremental in-
crease beyond w0

� leads to a displacement-controlled pull-off, de-
noted by an asterisk hereafter. The branch OP is physically inac-
cessible. The nonzero pull-off radius is in reminiscence of the
classical JKR solid-solid adhesion theory �9�.

2.5 The DMT-Limit. In the DMT-limit, the entire freestand-
ing annulus is under the influence of the surface force �b=1�. The
underdeveloped cohesive zone only becomes full-fledged when
c=0 and w0=y. The cusp delamination front is preserved �Fig. 3�.
The upper and lower limits of the second integral in Eq. �6a�
merge, and the membrane stress is reduced to the first integral
only. In summary

051005-4 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



w =
p

2s2�1 − r2 − c2 log	 1

r2
� �17�

w0 =
p

2s2�1 − c2 − c2 log	 1

c2
� �18�

s = � 3p2

2�1 − c2��3c4 − 4c2 + 1 + 2c4 log	 1

c2
��1/6

�19�

UE =
3�3c4 − 4c2 + 1 + 2c4 log�1/c2��2

2�1 − c2��1 − c2 − c2 log�1/c2��4 w0
4 �20�

US = �c2 + ���1 − c2� − �1 −
�1 − c2�2

2�1 − c2 − c2 log�1/c2���pw0�
�21�

For a fixed w0, ��UT /�c�=0 can be solved exactly to yield ana-
lytical expressions for w0�c�, F�c�, and thus F�w0� using MATH-

EMATICA, though the lengthy expressions are not given here. Fig-
ure 4 shows F�w0� for p=0.5. At F=0, w0=0 and the membrane is
in full contact with the punch. As delamination proceeds along
path OAB, F monotonically increases while the contact circle
shrinks. At B, the contact is reduced to a central point with c=0.
Further increase in w0 causes the membrane to pinch-off �contrast-
ing the pull-off with c0�. Either load-controlled or
displacement-controlled measurement leads to identical stable
delamination. Regardless of the surface force range, the initial
loading �w0=0� always begins with the DMT-limit.

The pinch-off loci can be obtained by putting c→0 into Eqs.
�18�–�21�, yielding w0

�= �p /12�1/3, s�= �3p2 /2�1/6, UE
� = �3 /2�

��w0
��4, and US

�=�− �pw0
� /2�, respectively. It can be easily shown

that F�=12�w0
��3. The condition w0

��y implies that the punch dis-
placement does not reach the surface force range when the mem-
brane completely separates from the punch. The special case of
w0=y requires b=1 and p=12y3. But since �= py, so the elimina-
tion of y yields p= p†=121/4=1.86121. This is the maximum dis-
joining pressure where the DMT-limit alone is sufficient to de-
scribe the entire delamination process.

From Fig. 4, it is remarkable that the JKR- and DMT-limits are
distinctly different from each other, even though the same adhe-
sion energy � is assumed. The JKR-DMT transition relating the
two limits is therefore of much interest.

2.6 The DMT-JKR Transition. To determine the delamina-
tion behavior for a surface force with finite range and finite mag-
nitude, a computational routine is coded using MATHEMATICA. The
first step is to determine the cohesive edge by numerically solving
Eq. �5�. Next, UE, US, and UT are obtained as functions of c for
fixed w0. Figures 5�a�–5�c� show the positively defined energy
terms for w0=0.5 and a range of p. At large p �100�, all energy
terms approach the JKR-limit �dashed curves�. In Fig. 5�b�, US
can only be obtained for c below a certain limit because the co-
hesive edge is bounded by c�b�1. In Fig. 5�c�, the local mini-
mum of UT represents the stable equilibrium value of c. The com-
putation is repeated for a range of w0 with fixed p, and the
resulting UT is shown in Figs. 6�a�–6�c�. Delamination proceeds
from right �c=1� to left and terminates at either c=0 or c=c�. In
Fig. 6�a�, p=0.5 and DMT-limit applies. As the punch moves
from w0=0 to 0.1, the minimum shifts to the left, indicating a
reduced contact radius. The process continues until pinch-off oc-
curs at w0

�. The delamination trajectory is shown as a dashed line
joining the minimum of each curve. In Fig. 6�b�, p=5 and DMT-
JKR transition is expected at w0=0.2. DMT-limit is valid for w0
=0 to 0.2, but fails thereafter because the cohesive zone is fully
developed and the punch displacement exceeds the force range.
The DMT-JKR transition prevails. Pinch-off eventually occurs at

Fig. 4 The JKR-limit follows path OSRQP with contact radii,
cO=cS=1.00, cR=0.7792, cQ=0.5395, and cP=c�=0.1945. Load-
controlled pull-off occurs at S, and displacement-controlled
pull-off at P. The branch OP „dashed… is physically inaccessible.
The DMT-limit follows path OAB with cA=0.49649 and cB=0.

Fig. 5 Energy as a function of contact radius for punch dis-
placement w0=0.5 and a range of disjoining pressure: „a… elas-
tic energy stored in the membrane, „b… surface energy, and „c…
total energy of the membrane-punch system.
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w0
�. The small break of the dashed curve at w0=0.2 is the result of

the mismatch of the average membrane stresses at the cohesive
edge and round-up errors in computing b, but it is ignored here.
Figure 6�c� shows the delamination process at a much larger p that
approaches the JKR-limit. All UT curves show a local minimum at
a larger value of c �stable equilibrium� and a maximum at a
smaller value �unstable equilibrium�. As w0 increases, the two
extrema approach each other. At w0=w0

�, the two extrema merge
into an inflexion with ��2UT /�c2�=0 �neutral equilibrium�. Further
punch movement leads to pull-off. The equilibrium dashed curve
shows a maximum that corresponds to the inflexion of UT�w0

��.
Portion of the dashed curve joining the maxima is physically in-
accessible �c.f. path OP in Fig. 4�. For p7, an inflexion point
always exists in UT and c� is always nonzero.

The last step is to generate the mechanical response, F�w0�, for
a range of p �Fig. 7�. For p� p†, the DMT-limit is expected. All
such curves �p=0.5 and p=1� terminate at the locus along OAB
with F�=12�w0

��3. For p p†, the DMT-JKR transition occurs at
w0=y. For instance, for p=5, DMT is valid until w0=� / p=0.20 at
J. In a load-controlled measurement, pull-off occurs at J. In a
displacement-controlled configuration, further increase in w0 re-
duces both external load and contact circle along JC. The energy
balance allows one to obtain the last loading point at C, where
c=0 and the membrane pinches off the substrate. Pinch-off occurs
along OABCD. For p exceeds approximately 7, pull-off with a
nonzero radius is expected, and the locus is shown as curve DH.
At p=100, the loading curve resembles the JKR-limit �c.f. Fig. 4�

with a sharp increase in F in the initial loading, and pull-off oc-
curs at H. Alternative expressions linking the measurable quanti-
ties, F�c� and w0�c�, are shown in Figs. 8 and 9, respectively. In
Fig. 8, delamination proceeds from bottom right �c=1 and F=0�
to the left �c=0 or c=c��. Load-controlled pull-off occurs at the
maximum load Fmax, followed by the subsequent displacement-
controlled delamination. The curves terminate either at c=0 or c
=c�. In Fig. 9, the dashed line labeled “DMT-JKR” denotes the
transition and the load-controlled pull-off load Fmax. At
displacement-controlled pull-off, ��w0 /�c�=0. Figure 10 shows
the pull-off radius as a function of disjoining pressure. As p in-
creases, c� approaches the JKR-limit of 0.194545.

Figure 11 shows the varying cohesive edge as a function of
contact radius. For p� p†, DMT-limit is valid and the cohesive
edge extends to the membrane periphery �b=1�. Delamination
proceeds from the right top corner �b=1� to left top corner �c=0
and b=1�. For p†� p�7, the trajectory deviates from the DMT-
limit at Fmax and continues to decrease until pinch-off. For p7,
the curves terminate at the pull-off locus. Behavior of very large p

Fig. 6 Total energy of the membrane-punch system for dis-
joining pressure „a… p=0.5, „b… p=5, and „c… p\� „JKR-limit….
Dashed curves joining the minima of individual curves indicate
mechanical equilibrium and delamination process.

Fig. 7 Mechanical response for a range of disjoining pressure.
The dashed curve OABCD corresponds to pinch-off with zero
contact radius, and curve DH is pull-off with nonzero contact
radius.

Fig. 8 Mechanical response for a range of disjoining
pressures
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approaches the JKR-limit of b=c. Figure 12 shows the cohesive
zone width �b-c� as a function of contact radius. In the DMT-limit,
delamination proceeds from the right bottom corner �b=c=1� to
the left top corner �b=1 and c=0� to maintain b=1. Deviation
from the DMT-limit occurs once the disjoining pressure exceeds
p†. The JKR-limit requires the cohesive zone width to be always
zero. Note that the cohesive zone width is roughly constant in the
initial loading, while deviation aggravates when the contact circle
contracts to a central point at the membrane-substrate interface. At
large p �100�, the cohesive zone is constant and virtually zero
throughout the delamination process, consistent with the classical
linear elastic fracture mechanics.

3 Discussion
The new model is useful in extracting materials parameters

from adhesion measurements. The punch can be treated as a probe
similar to the standard nano-indenter or atomic force microscope
�AFM� tip moving toward a clamped membrane. The punch dis-
placement, w0, is treated as the probe position from the nonde-
formed sample surface. The experiment is expected to yield the
results shown in Figs. 13�a�–13�c�. In Fig. 13�a�, p=1.25 and y

=� / p=0.8, the probe does not sense the existence of the mem-
brane until the probe moves into the force range, w0=y=0.8, at A.
The membrane deforms into a spherical cap at B, but there is no
intimate probe-membrane contact until C. The applied load re-
mains constant along BC. At C, the membrane makes a one point
contact with the probe. Further probe motion expands the contact
circle along the reversible curve CO. Unloading retraces the path
OCBA. No hysteresis is expected for the loading-unloading pro-
cess. Figure 13�b� shows the limiting case of p= p†. When the
probe falls within the surface force range at B, pull-in occurs and
the membrane jumps into a single point contact with the probe at
C. Figure 13�c� shows a more fascinating situation when p=5�
p†� and DMT-JKR transition is expected. Since y=0.2, the
probe only senses the surface force when it reaches B. At B,
pull-in occurs with a nonzero contact radius reaching C, and the
probe senses a sharp attractive force. If the probe now recedes, the
contact circle shrinks following a different path CD until pull-off
occurs at D and then returns to A. The area ABCD thus represents

Fig. 9 Mechanical response for a range of disjoining pres-
sures. The dashed curve DMT-JKR indicates the transitional
behavior.

Fig. 10 Pull-off radius as a function of disjoining pressure.
The critical radius approaches the JKR-limit at large p.

Fig. 11 Cohesive edge as a function of contact radius for a
range of disjoining pressures. Delamination proceeds from
right to left. All curves initiate at c=1 and b=1 until deviation
occurs at critical contact radii.

Fig. 12 Cohesive zone width as a function of contact radius
for a range of disjoining pressure. Delamination proceeds from
right to left. All curves initiate at c=1 and b−c=0 until deviation
occurs at critical contact radii.
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a loading-unloading hysteresis loop. Another possible scenario is
that since the total energy at D is lower than that at A, a small
instability or vibration of the measuring device might cause
pull-in at AD, then the loading-unloading follows ADC-CDA and
the hysteresis is lost. The abrupt increase in attractive forces on
the probe in Figs. 13�a�–13�c� is the artifact of the Heaviside
function of disjoining pressure �c.f. Fig. 1�. In reality, the
Lennard-Jones-like potential leads to a more gradual change.

A significant implication of the above analysis is the necessity
to measure instantaneous contact dimension in addition to the
conventional mechanical response F�w0�. Most published AFM
data reported in the literature are by and large force measurement,
and the adhesion energy is deduced using the classical JKR model
of solid adhesion, such as F�= �3 /2��R� with R the sphere radius.
The fact that most biomimetic microcapsules or biological cells
are not solid spheres but membrane encapsulated vesicles implies
that new membrane-substrate model similar to the present work is
needed. Moreover, force measurement alone is not sufficient to
determine the interfacial adhesion because the mechanical re-
sponse depends predominantly on �i� the magnitude and range of
the surface forces and �ii� whether measurement is done in load-
controlled or displacement-controlled mode. The missing informa-
tion in most reported experiments is the instantaneous contact
radius along with the applied load and probe displacement.

The new model has significant impacts on the design of a num-
ber of MEMS with moveable membranes �24�. A micropump
comprises a diaphragm directly controlled by an external potential
applied to an electrostatic pad underneath. At a threshold voltage,
pull-in occurs and the membrane comes into intimate contact with
the pad. Our previous model used the cohesive zone approxima-
tion similar to the present one to derive the critical pull-in voltage.
The current model addresses the contact problem when the ap-
plied voltage is removed and the diaphragm is expected to return
to its nondeformed plane. In the presence of surface forces, energy
is dissipated as a result of the hysteresis loop depicted in Fig.
13�c�. The device operation is obstructed accordingly, and the
resonance frequency is deliberately shifted. In the worst situation,
should the surface force be sufficiently large and the diaphragm-
pad gap is narrow down to the order of the surface force range, a
full elastic recovery is not possible and the diaphragm remains in
contact with the pad even at the removal of applied voltage. The
device thus fails. Our model provides indispensable design guide-
lines to MEMS especially when the dimensions shrink from mi-
croscale to nanoscale.

The model is also applicable to cell adhesion and tissue engi-
neering. Adhesion at local spots on a tissue sample or even a
single cell can be measured provided a fixed circular boundary
can be defined. A map of propensity to adhesion can be experi-
mentally determined for a small sample. The present 2D planar
problem can also be extended to 3D cell adhesion. In the presence
of long-range surface forces, biomimetic microcapsules or cells
adhere or repel depending on attractive/repulsive nature of the
disjoining pressure. We have earlier shown how a spherical thin-
walled vesicle adheres to and detaches from a planar substrate via
a zero-range disjoining pressure �25�, though most intersurface
interactions are long-range in nature. It is beyond the scope of this
paper to discuss the 3D deformation here, but some generalization
is possible. For instances, �a� the membrane radius in our model is
of the same order of magnitude as radius of a cell, and �b� the
ratio of cell radius to surface force range is a gauge to determine
whether the disjoining pressure is effectively long- or short-
ranged. Cell detachment from a substrate or an apposing cell ei-
ther by an internal osmotic pressure or mechanical force essen-
tially follow the processes depicted in Fig. 13.

As a last remark, it is worth mentioning that the “constrained
blister test,” developed by Chang et al. �26� and extensively stud-
ied by Plaut at al. �27� in terms of long-range surface forces, is
similar to the present setup despite a number of major differences.
A membrane clamped at the periphery is deformed by a uniform
hydrostatic pressure, rather than a mechanical force on the punch,
before the bulging membrane is brought into contact with the
punch surface. Moreover, the separation between the plane of the
nondeformed membrane and the flat substrate is fixed, rather than
being a controlled variable, so that the blister membrane does not
undergo an unstable growth at a critical hydrostatic pressure.

4 Conclusion
The adhesion-delamination mechanics of a thin membrane

clamped at the periphery is obtained. The model provides the
interrelationship between the measureable quantities of applied
load, punch displacement, and contact radius, and how the experi-
mental data can be analyzed to yield the materials parameters,
such as adhesion energy, range and magnitude of the disjoining
pressure, and elastic modulus. Critical thresholds of pinch-off,
pull-off, and pull-in in both force-controlled and displacement-
controlled configurations, which can be empirically measured, are
also identified. The model is consistent with the now-celebrated
models of JKR and DMT solid adhesion.
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Fig. 13 Mechanical force measured by a punch probe as it
moves toward a clamped membrane. The dashed curve is a
reference to the pinch-off-pull-off locus. „a… For p=1.25 and
range y=0.8, probe senses the membrane at A. Loading-
unloading follows ABCO-OCBA. No hysteresis is expected. „b…
For p=1.86 and y=0.5373, loading-unloading follows ABC-CBA.
No hysteresis is expected. „c… For p=5 and y=0.2, loading-
unloading follows ABC-CDA. Hysteresis is expected.
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Rotating Beams and Nonrotating
Beams With Shared Eigenpair
In this paper, we look for rotating beams whose eigenpair (frequency and mode-shape) is
the same as that of uniform nonrotating beams for a particular mode. It is found that, for
any given mode, there exist flexural stiffness functions (FSFs) for which the jth mode
eigenpair of a rotating beam, with uniform mass distribution, is identical to that of a
corresponding nonrotating uniform beam with the same length and mass distribution. By
putting the derived FSF in the finite element analysis of a rotating cantilever beam, the
frequencies and mode-shapes of a nonrotating cantilever beam are obtained. For the first
mode, a physically feasible equivalent rotating beam exists, but for higher modes, the
flexural stiffness has internal singularities. Strategies for addressing the singularities in
the FSF for finite element analysis are provided. The proposed functions can be used as
test-functions for rotating beam codes and for targeted destiffening of rotating beams.
�DOI: 10.1115/1.3112741�

1 Introduction
Rotating beams serve as useful mathematical models of heli-

copter rotor blades, wind turbine blades, propeller blades, gas tur-
bine blades, and other important mechanical structures. Such
beams can suffer from vibration problems if their rotating natural
frequencies coincide with multiples of the rotation speed. There-
fore, the accurate determination of natural frequencies and mode-
shapes of a rotating beam is an important problem �1�. The dy-
namics of a rotating beam is governed by a fourth-order partial-
differential equation, which cannot be solved exactly for natural
frequencies and mode-shapes, even for a uniform rotating beam
�2�. Therefore, the frequencies of a rotating beam are usually pre-
dicted by approximate methods like the Rayleigh–Ritz method
�3,4�, Galerkin method �5,6�, etc., or by the finite element method
�FEM� �7–14�.

However, in the absence of an exact solution to the governing
equation, the approximate methods are checked by comparing
with other numerical methods or with series solutions obtained
using the Frobenius method of solving differential equations �15�.
The series solution approach is also called a semi-analytical ap-
proach and is the closest we can get to the exact solution of the
rotating beam equation. Another semi-analytical approach is the
dynamic stiffness method �16,17�. The dynamic stiffness method
uses frequency dependent shape functions obtained from the so-
lution of the governing equations of the structure. One advantage
of the dynamic stiffness method is that one element can give all
the natural frequencies and mode-shapes to any desired level of
accuracy �18�. Banerjee et al. �18� recommended the dynamic
stiffness method for checking the results of finite element analysis
of rotating beams.

The finite element method, in its various forms, has emerged as
a popular approach to the vibration analysis of rotating beams.
While most early works on finite element analysis of rotating
beams concentrated on the h-version, recent works advocate the
use of a single element using p-version, Fourier-p, dynamic finite
element, and spectral approaches �12,13,19�. In the h-version
FEM, the number of elements is increased until convergence is
achieved. Typically, the stiffness and mass distribution are as-
sumed to be uniform within the element. Therefore, a large num-
ber of elements are needed for nonuniform beams. In other ap-

proaches based on a single element, the order of the basis
functions is increased for convergence. Practical structures have
highly nonuniform variations in mass and stiffness properties. Use
of a single element allows easy inclusion of the nonuniformity as
functions EI�x� and m�x� for flexural stiffness and mass per unit
length, respectively. Also, the model order using spectral and
Fourier-p FEM approaches is typically less than that with
h-version, which is useful for control applications �7�.

As new single element methods for rotating beam analysis are
created, it would be useful if they could be validated without
requiring a different analysis. Similarly, the h-version codes need
to be validated. The main problem lies in the absence of an exact
solution for vibration analysis of rotating beams. However, a uni-
form nonrotating beam has exact solutions to its frequencies and
mode-shapes, obtained by solving a transcendental equation �20�.
In this paper, we seek to find out an equivalent rotating beam with
the same frequency and mode-shape of a uniform nonrotating
beam for a particular mode. Such beams, if they exist, would be of
interest from a fundamental science perspective and also yield
test-functions, which could be used to check approximate methods
for rotating beams and for the design of such beams to match the
frequencies and mode-shapes of nonrotating beams.

2 Formulation
Consider a beam rotating about the vertical axis with uniform

angular velocity � and with dimensions, as shown in Fig. 1. The
governing equation for the out-of-plane vibrations of the rotating
beam is given by �1�

�EI1�x�w��� + m�x�ẅ − �T�x�w��� = 0 �1�

where T�x�=�x
Lm�x��2�R+x�dx+F, EI1�x� is the flexural stiff-

ness, m�x� is the mass per unit length of the beam, w�x , t� is the
out-of-plane bending displacement, R is the hub radius, L is the
beam length, and F is the axial force applied at the free end of the
beam.

Now, consider a nonrotating beam of the same length, L, mass
per unit length, m�x�, and boundary conditions as the rotating
beam in Eq. �1�. This beam is governed by the equation �20�

�EI2�x�w��� + m�x�ẅ = 0 �2�

where EI2�x� is the flexural stiffness of this beam.
Let the jth mode-shape and the frequency of these beams be the

same and equal to � j and � j, respectively. The bending displace-
ment wj for the jth mode is given by
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wj = � je
i�jt �3�

Obviously, the mode-shape � j must satisfy the governing differ-
ential equation. Substituting Eq. �3� into Eqs. �1� and �2�, we
obtain

�EI1�x�� j��� − m�x�� j
2� j − �T�x�� j��� = 0 �4�

�EI2�x�� j��� − m�x�� j
2� j = 0 �5�

Subtracting Eq. �5� from Eq. �4� yields

�EI1�x�� j��� − �EI2�x�� j��� − �T�x�� j��� = 0 �6�
Equation �6� gives the relation between the flexural stiffness of a
rotating beam and that of a nonrotating beam with the same eigen-
pair. Note that the expression � j is different for different modes,
and thus different expressions for EI1�x� are obtained for different
modes. Explicitly, EI1�x� in terms of EI2�x� is

EI1�x� =

� �� ��EI2�x�� j��� + �T�x�� j����dx�dx

� j�
�7�

If we consider a nonrotating beam of uniform flexural stiffness,
then m�x�=m, EI2�x�=EI2, and Eq. �7� becomes

EI1�x� =

� �� �EI2� j
�4� + �T�x�� j����dx�dx

� j�
�8�

The mode-shapes of a uniform cantilever beam can be solved
exactly and are given by the beam function �21�

� j�x� = Cj�cos�� jx� − cosh�� jx��

+ Cj� sin�� jL� − sinh�� jL�
cos�� jL� + cosh�� jL�

�sin�� jx� − sinh�� jx���
�9�

where � j�s are solutions to the characteristic equation
cos�� jL�cosh�� jL�=−1 and Cj�s are arbitrary constants. The fre-
quencies � j are given by �20�

� j = �� jL�2	 EI2

mL4 �10�

where ��1L�2=3.5160, ��2L�2=22.0345, ��3L�2=61.6972, and
��4L�2=120.902 are the exact values up to four decimal places for
the first four modes.

3 Flexural Stiffness Functions
We seek to find flexural stiffness variations EI1�x� for each

mode such that the frequency and mode-shape for the correspond-
ing mode of the rotating beam are the same as that of a nonrotat-

ing beam. Equations �9� and �10� can be substituted in Eq. �8� to
obtain the corresponding EI1�x� of a rotating beam. We consider a
nonrotating beam with uniform properties and dimensions, as
shown in Table 1 �22�. The first four natural frequencies of this
beam, up to four decimal places, are 142.4015 rad/s, 892.4150
rad/s, 2498.7879 rad/s, and 4896.6271 rad/s, respectively. The cor-
responding nondimensional frequencies ��=	m�2L4 /EI� are
3.5160, 22.0345, 61.6972, and 120.902, respectively. The func-
tions EI1�x� obtained from Eq. �8� are given in Eq. �11� for the
first four mode-shapes. Here �EI1�i corresponds to the ith mode.

�EI1�i =
Ni

Di
�11�

where

N1 = �− 3.5160EI2

L2 + 0.78441m�2L2�cos�z1�

−
3.5160EI2

L2 cosh�z1� +
2.5811EI2

L2 sinh�z1�

+ �2.5811EI2

L2 − 0.57583m�2L2�sin�z1�

+ 0.53330m�2Lx sin�z1� + 0.3915m�2Lx cos�z1�

− 0.02866m�2L2ez1 + 0.36705m�2x2 sin�z1�

− 0.5m�2x2 cos�z1� − 0.18692m�2L2e−z1

− 0.07094m�2Lxez1 + 0.46240m�2Lxe−z1

+ 0.06647m�2x2ez1 + 0.43352m�2x2e−z1 + c1x + c2

�12�

D1 =
− 3.5160

L2 cos�z1� +
− 3.5160

L2 cosh�z1� +
2.5811

L2 sin�z1�

+
2.5811

L2 sinh�z1� �13�

N2 = �− 22.034EI2

L2 + 0.54538m�2L2�cos�z2�

−
− 22.034EI2

L2 cosh�z2� +
22.441EI2

L2 sinh�z2�

+ �22.441EI2

L2 − 0.55546m�2L2�sin�z2�

+ 0.21303m�2Lx sin�z2� + 0.21697m�2Lx cos�z2�

+ 0.00420m�2L2ez2 + 0.50923m�2x2 sin�z2�

− 0.5m�2x2 cos�z2� − 0.45881m�2L2e−z2

+ 0.00197m�2Lxez2 + 0.21500m�2Lxe−z2

+ 0.00462m�2x2ez2 + 0.50462m�2x2e−z2 + c1x + c2

�14�

Fig. 1 Schematic of a rotating beam

Table 1 Properties of uniform nonrotating beam

Property Value

Length �L� 0.6 m
Elasticity modulus �E� 2�1011 Pa
Moment of inertia �I� 2�10−9 m4

Mass density ��� 7840 kg /m3

Cross-section area �A� 2.4�10−6 m2

Linear mass density �m� 1.8816 kg/m
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D2 =
− 22.034

L2 cos�z2� +
− 22.034

L2 cosh�z2� +
22.441

L2 sin�z2�

+
22.441

L2 sinh�z2� �15�

N3 = �− 61.697EI2

L2 + 0.51621m�2L2�cos�z3�

−
61.697EI2

L2 cosh�z3� +
61.649EI2

L2 sinh�z3�

+ �61.649EI2

L2 − 0.51581m�2L2�sin�z3�

+ 0.12731m�2Lx sin�z3� + 0.12721m�2Lx cos�z3�

− 0.00018m�2L2ez3 + 0.49961m�2x2 sin�z3�

− 0.5m�2x2 cos�z3� − 0.48360m�2L2e−z3 − 0.49365

� 10−4m�2Lxez3 + 0.12726m�2Lxe−z3 + 0.49981m�2x2e−z3

+ 0.19388 � 10−3m�2x2ez3 + c1x + c2 �16�

D3 =
− 61.697

L2 cos�z3� +
− 61.697

L2 cosh�z3� +
61.649

L2 sin�z3�

+
61.649

L2 sinh�z3� �17�

N4 = �− 120.90EI2

L2 + 0.50827m�2L2�cos�z4�

−
120.90EI2

L2 cosh�z4� +
120.91EI2

L2 sinh�z4�

+ �120.91EI2

L2 − 0.50829m�2L2�sin�z4�

+ 0.09095m�2Lx sin�z4� + 0.09095m�2Lx cos�z4�

− 0.49174m�2L2ez4 + 0.50001m�2x2 sin�z4�

− 0.5m�2x2 cos�z4� − 0.49174m�2L2e−z4 − 0.15258

� 10−5m�2Lxez4 + 0.09095m�2Lxe−z4 + 0.50002m�2x2e−z4

+ 0.83883 � 10−5m�2x2ez4 + c1x + c2 �18�

D4 =
− 120.90

L2 cos�z4� +
− 120.90

L2 cosh�z4� +
120.91

L2 sin�z4�

+
120.91

L2 sinh�z4� �19�

Here z1=1.875x /L, z2=4.694x /L, z3=7.855x /L, z4=10.996x /L,
and c1 and c2 are arbitrary constants resulting from integration.
We see that these functions contain trigonometric, hyperbolic,
polynomial, and exponential functions. It can be observed that as
�→0, EI1→EI2.

The variation in EI1�x� versus x with constants c1 and c2 equal
to 0 is shown in Fig. 2 for a beam with properties listed in Table
1 and �=360 rpm �R=F=0� for the first four modes. The corre-
sponding nonrotating beam has a uniform flexural stiffness, EI2
=400 N m2. Note that the EI1�x� variation for the jth mode has
j−1 internal singularities. The singularities are explained as fol-
lows. If the nodal coordinates of the jth mode of a uniform non-
rotating beam are x1 ,x2 , . . . ,xj−1, then the second derivative of the
corresponding mode-shape, � j�, vanishes at x=L−x1, L−x2 , . . .,
L−xj−1. The proof is given in Appendix A. Also, at x=L, the
second derivative must vanish because of the boundary condition
M =EIw�=0 at the free end of the beam. Since Eqs. �7� and �8�
have � j� in the denominator, the singularities occur at each of
these points. The tip singularities are not shown in Fig. 2. We
show later in this paper that the tip singularities can be ignored for
numerical results.

4 Numerical Simulations: p-Version FEM
The derived variation EI1�x� in a rotating beam should give the

same frequencies and mode-shapes as that of a nonrotating beam.
For a uniform nonrotating beam, these frequencies and mode-
shapes can be solved exactly to any desired level of accuracy. If
the functions EI1�x� obtained above are inserted into a rotating
beam finite element code, then we should obtain the frequencies
and mode-shapes of a nonrotating beam �23�. This can be used to
test the exactness of the solutions obtained from the rotating beam
code.

For the FEM modeling, we use the p-version formulation,
where only one element is used for the entire beam �1�. As men-
tioned in the Introduction, such approaches are popular in rotating
beam analysis for handling nonuniformity and obtaining reduced
order. The displacement w is expanded in terms of an n degree
polynomial function as

Fig. 2 EI1„x… variation for first four modes for a beam with properties given
in Table 1
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w = 

i=0

n

pix
i �20�

Let the vector of generalized coordinates be P= �pi�. A set of n
−3 nodes ��1 ,�2 , . . . ,�n−3� is identified in the interior of the
beam at equidistant points as in Fig. 3. Define variables qi as q1
=w�0�, q2=w��0�, q3=w��1�, q4=w��2� , . . ., qn−1=w��n−3�, qn

=w�L�, and qn+1=w��L�.
Let Q= �qi�. Substituting Eq. �20� in these gives a relation be-

tween the P and Q. The interpolation functions �i are derived for
the �n−1�-node element by satisfying the conditions Qj =	ij,
where 	 is the Kronecker delta function, and obtaining the corre-
sponding constants, pij. The interpolation polynomials are then
given by

�i = 

j=0

n

pijx
j �21�

The expressions for kinetic and potential/strain energy of the ro-
tating beam are given by

T =
1

2�
0

L

m�x�ẇ2dx �22�

U =
1

2�
0

L

EI1�x��w��2dx +
1

2�
0

L

T�x��w��2dx �23�

After putting the displacement expressions into Eqs. �22� and �23�
and applying Lagrange’s equations of motion, the natural frequen-
cies of the rotating beam are found out from the familiar eigen-
value problem given by

�K��x� = �2�M��x� �24�
The �global� mass and stiffness matrices are given by

�Mij�n =�
0

L

m�x��i� jdx �25�

�Kij�n =�
0

L

EI1�x��i�� j�dx +�
0

L

T�x��i�� j�dx �26�

Here �Mij�n and �Kij�n represent the global mass and stiffness
matrices obtained by using an nth order expansion for w. Note
that the integration limits in Eqs. �25� and �26� are 0 and L be-
cause only one element is used for the entire beam.

We first check the validity of the p-version FEM code, for dif-
ferent nondimensional rotating speeds �
=	m�2L4 /EI=0 and
12�, by comparing obtained results with published literature
�1,2,7,11�. The comparison is shown in Tables 2 and 3. For the
beam with properties in Table 1 and with �=360 rpm, the first
four nondimensional rotating frequencies are 3.6600, 22.1615,
61.8225, and 121.0311, respectively.

The functions EI1�x� obtained from Eqs. �11�–�19� may now be
substituted in Eqs. �25� and �26� to test the exactness of the nu-
merical code for a rotating beam. Since EI1�x� obtained from Eqs.
�11�–�19� is a complicated function of x, the first term in Eq. �26�
cannot be exactly calculated. Therefore, this integral has to be
evaluated using numerical methods. We use the Gauss quadrature
to evaluate the integral. Since the functions EI1�x� are not simple
polynomial functions, we use a large number of Gauss–Legendre
points for the quadrature. We have used 30 points in our analysis.
We ensure that the Gauss-quadrature nodes do not fall on the
singularity points for correct estimate of the integral. Such an
approach is typically used to address singularities using numerical
methods �24–27�. With 30 Gauss–Legendre nodes in the domain
�0 m, 0.6 m�, it is observed that none of the nodes fall within a
range of �0.01 m of any singular points of the first four modes.
This is illustrated in Fig. 4. However, they provide sufficient sam-
pling for an accurate evaluation of the integral as we shall see
from numerical results. The same number of points can be used
for any length of the beam as the property is maintained for all

Fig. 3 Beam element used for p-version FEM

Table 2 Comparison of nondimensional frequencies of a uniform cantilever beam „�=0…

Mode
Present
FEM

Gunda and
Ganguli �11�

Wang and
Wereley �7� Wright et al. �2�

Hodges and
Rutkowsky �1�

1 3.5160 3.5160 3.5160 3.5160 3.5160
2 22.0345 22.0345 22.0345 22.0345 22.0345
3 61.6972 61.6972 61.6972 61.6972 61.6972
4 120.902 120.902 120.902 120.902 N/A

Table 3 Comparison of nondimensional frequencies of a uniform cantilever beam „�=12…

Mode
Present
FEM

Gunda and
Ganguli �11�

Wang and
Wereley �7� Wright et al. �2�

Hodges and
Rutkowsky �1�

1 13.1702 13.1702 13.1702 13.1702 13.1702
2 37.6031 37.6032 37.6031 37.6031 37.6031
3 79.6145 79.6146 79.6145 79.6145 79.6145
4 140.534 140.535 140.534 140.534 N/A

Fig. 4 Gauss-quadrature points of order 30 for the domain
„0,0.6… and the singularity points of the flexural stiffness
functions
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beam lengths. The algorithm for calculating the points and
weights of Gauss quadrature for a general domain is given in
Appendix B.

Convergence of the code to the exact value of frequency, in
rad/s, within four decimal places of accuracy was achieved using
polynomial order n=6, 8, 11, and 14 for the first four modes,
respectively. The beauty of the derived functions is that they give
the exact value of the nondimensional frequencies ��
=	m�2L4 /EI� of a nonrotating beam, which are 3.5160, 22.0345,
61.6972, and 120.902, respectively, for the first four modes. The
convergence is very fast and is illustrated in Fig. 5. The nodal
displacements are obtained as eigenvectors �x� from Eq. �26�. The
mode-shapes are obtained by using the interpolation polynomials
to interpolate the displacements between nodal values. The nor-
malized mode-shapes �with a value of 1 at x=L� obtained at con-
vergence compare very well with the exact mode-shapes from Eq.
�9�. The residue of mode-shapes obtained is of order of 10−7 or
less and is shown in Fig. 6. We have thus numerically shown that
the derived flexural stiffness functions give rotating beams with

the same eigenpair of the corresponding uniform nonrotating
beam for a given mode. For the first mode, there are no internal
singularities, and a physically feasible equivalent rotating beam
exists. Moreover, the functions for modes higher than the first are
integrable using Gauss quadrature despite the presence of singu-
larities.

5 Numerical Simulations: h-Version FEM
Though many rotating beam codes use p-version type single

element formulations, there exist h-version codes, where a
smeared value for the stiffness and mass per unit length is used for
each element.

In the h-version FEM, the beam is discretized into many finite
elements, and relevant interpolation functions are used to set up
equations in each element. We use Hermite cubic interpolation
functions and 4DOF finite elements with displacement and slope
DOF at each node �22�. The natural frequencies of the rotating
beam are obtained from the eigenvalue problem of Eq. �24�.

Fig. 5 Convergence of the p-version finite element code for first four
modes using derived flexural stiffness functions

Fig. 6 Residue of mode-shapes obtained from p-version FEM
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Here, the global mass matrix �M� and the global stiffness ma-
trix �K� of the beam are obtained by assembling the elemental
mass and stiffness matrices. These matrices for the nth finite ele-
ment are given by

�Mij�n =�
xn

xn+1

m�xn˜��i� jdx �27�

�Kij�n =�
xn

xn+1

EI1�xn˜��i�� j�dx +�
xn

xn+1

T�xn˜��i�� j�dx �28�

where xn, xn+1, and xn˜ are the coordinates of the left node, the
right node, and the midpoint of the nth finite element and �1,2,3,4
are the Hermite cubic interpolation polynomials defined in the
interval �xn ,xn+1�. These are given in Table 4, where x̄=x−xn

refers to the local coordinate and e=xn+1−xn refers to the element
length.

The code is validated first by comparing the results with differ-
ent rotation speeds with published literature �1,2,7,11�. Next, we
substitute the functions EI1�x� from Eqs. �11�–�19� in Eqs. �27�
and �28�. Since EI1�xn˜�, m�xn˜�, and T�xn˜� are constants and �1,2,3,4
are simple polynomial functions, the integrals in Eqs. �25� and
�26� can be calculated in a closed form. The convergence charac-
teristics for different modes are studied next.

5.1 First Mode. For the first mode, we discretize the domain
into a uniform mesh and gradually refine the mesh by increasing
the number of elements. Since the function EI1�x� for mode 1 is a
benign function with a gradual variation and no internal singulari-
ties �see Fig. 2�, the h-version code converges very rapidly. With
16 uniform elements, the first-mode nondimensional frequency
converges to the exact value up to four decimal places, which
equals 3.5160. The convergence is illustrated in Fig. 7. The mode-
shapes also converge to that of the corresponding uniform nonro-
tating beam. The residue of the nodal displacements obtained
from the eigenvalue problem, with 16 uniform elements in the

domain, is shown in Fig. 7. We see that for the fundamental mode,
a physically feasible equivalent rotating beam exists as internal
singularities are absent.

5.2 Second Mode. The flexural stiffness function correspond-
ing to the second mode has one internal singularity and unfortu-
nately, the regular h-version FEM does not converge uniformly.
There is a blow up in the value of frequency when a certain
number of elements are used in the domain. This happens when
the midpoint of an element coincides with or falls very close to
the point of singularity. In particular, the code blows up for 30
uniform elements in the domain where the midpoint of the seventh
element �x=0.13 m� coincides with the singularity point. To ad-
dress this problem, we place a node at the singularity point, which
ensures that the midpoint of no element coincides with the singu-
larity point. This method is typical of finite element analysis in
fracture mechanics, where a node is placed at the crack for the
analysis �28�. Here, we create a fundamental mesh with a node at
the singularity point and a fixed number of elements in the do-
main. Then we keep refining the mesh by dividing each of these
elements into m equal parts �m=1,2 ,3 , . . .�. As the number of
elements increases, the h-version code approaches the exact value
of the frequency.

For mode 2, the nodes are identified by setting ��x�=0. The
nodes are found to exist at a nondimensional coordinate of �
=x /L=0.783, which for a beam of length, 0.6 m, occurs at x
=0.470 m. Hence, the singularity occurs at x=0.6 m–0.470 m
=0.130 m. We develop an initial discretization for this mode with
a mesh, as shown in Fig. 8. The refined mesh for m=2 and m
=3 is also shown in Fig. 8. Note that the fundamental mesh has
elements of more or less equal lengths. Elements of equal lengths
are created for faster and uniform convergence. With gradual re-
fining of the mesh, the total number of elements in the domain, n,
increases as multiples of 5, i.e., n=5 m. The number of elements
needed for the nondimensional frequency to converge to an accu-
racy of four decimal places ��=22.0345� is n=55. The conver-
gence rate and the residue of the nodal displacements obtained
with n=55 �m=11� are shown in Fig. 9.

Table 4 Hermite interpolation polynomials

�1
2� x̄

e
�3

− 3� x̄

e
�2

+ 1

�2 �� x̄

e
�3

− 2� x̄

e
�2

+ � x̄

e
��e

�3
− 2� x̄

e
�3

+ 3� x̄

e
�2

�4 �� x̄

e
�3

− � x̄

e
�2�e

Fig. 7 Convergence characteristics and residue of nodal displacements for
first mode with h-version finite element code

Fig. 8 Fundamental mesh for the second mode h-version
FEM, and the first two refinements
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5.3 Third Mode. The nodal positions for the third mode of a
uniform rotating beam are found to exist at �=0.503 and �
=0.868. For the h-version finite element analysis, we place a node
at each of the singularity points, x=0.079 m and x=0.298 m. The
fundamental mesh for this mode is formed by dividing the region
between the singularities into elements of nearly equal size. The
fundamental mesh and the refined mesh for m=2 and m=3 are
given in Fig. 10. The total number of elements in the domain after
m refinements is given by n=8 m. The code converges to the
exact value of nondimensional frequency up to four decimal
places ��=61.6972� for n=96. The convergence rate and the resi-
due of the nodal displacements are shown in Fig. 11.

5.4 Fourth Mode. The nodal positions for the fourth mode
are identified at �=0.358, 0.644, and 0.906, respectively. The sin-
gularities occur at x=0.057 m, 0.213 m, and 0.385 m. By placing
a node at each of these points, we form the fundamental mesh for
mode 4, as given in Fig. 12. For this case, n=11 m. Convergence
of nondimensional frequency � to four decimal places of accuracy
��=120.9019� happens for n=121. The convergence of frequency
and residue of nodal displacements is given in Fig. 13.

It is clear that by placing the element nodes at the singularity
locations, any h-version FEM code can be checked using the flex-

ural stiffness EI1�x� derived in this paper. For all cases, monotonic
convergence is obtained to the frequencies and mode-shapes of a
nonrotating beam.

6 Realistic Beams
It may be of interest to manufacture rotating beams with the

spectra jth mode eigenpair of nonrotating beams. In Secs. 2–5, we
showed that there exists a rotating beam with the same jth fre-
quency and mode-shape of a uniform nonrotating beam whose
length and mass variation is also the same. Mathematically speak-
ing, the centrifugal stiffening effects of the rotating beam have
been nullified by appropriate tailoring of the flexural stiffness
variation. Such beams may be useful in structural design if we
want to counter the effects of centrifugal stiffening by stiffness
variation. We study the beams corresponding to the first four
modes in this section.

6.1 First Mode. It can be seen from Fig. 2 that only the first
mode gives a physically reasonable EI1�x� profile, if we ignore the
tip singularity. The tip singularity does not cause any problem in
the numerical integration or finite element analysis. Thus, there
may exist realistic rotating beams whose fundamental eigenpair
matches that of a uniform nonrotating beam. As an example, con-
sider a rectangular cross-sectional beam defined by breadth b and
height h. Then we have mass per unit length of the beam as m
=�bh and the flexural stiffness as EI1=E�bh3 /12�. Assuming that
b=b�x�, h=h�x�, m=1.8816 kg /m3, E=2�1011 Pa, and �
=7840 kg /m3, we obtain the required beam with the following
cross section dimensions:

h�x� =	12�EI1�x�
Em

�29�

b�x� =	 Em3

12�3EI1�x�
�30�

Substituting for EI1�x�, the flexural stiffness function for the first
mode, from Eqs. �11�–�13�, we obtain a variation for b�x� and

Fig. 9 Convergence characteristics and residue of nodal displacements for
second mode with h-version finite element code

Fig. 10 Fundamental mesh for the third mode h-version FEM,
and the first two refinements

Fig. 11 Convergence characteristics and residue of nodal displacements
for third mode with h-version finite element code

Journal of Applied Mechanics SEPTEMBER 2009, Vol. 76 / 051006-7

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



h�x�, as shown in Fig. 14. The top and the front views of a sym-
metric beam with these dimensions are shown in Fig. 15. Note
that the height and the breadth of this beam do not differ signifi-
cantly from the values of the corresponding nonrotating beam. For
the corresponding nonrotating beam, b=24 mm and h=10 mm.
Therefore, the rotating beam with the same first-mode eigenpair is
physically possible.

6.2 Second Mode. The expressions EI1�x� obtained from Eqs.
�11�–�19�, for modes higher than the first, are very complicated
and have a very high degree of nonlinearity in their variation.

Rotating beams with the EI1�x� variation corresponding to the
higher modes will be difficult to manufacture. Moreover, as is
evident from Fig. 2, the value of EI1�x� blows up near the singu-
larities. The value of EI1�x� tends to � on either side of these
singularities. Hence it is physically impossible to make such
beams, though the flexural stiffness can be used as test-functions
by avoiding the singularities via numerical integration or nodal
placement. However, approximations for EI1�x� can be con-
structed by selecting a finite number of points in the domain of the
beam and satisfying the value of EI1�x� at these points. Then we
can develop a function for EI1�x� passing through these points by
constructing interpolation functions between these points. Cubic
Hermite interpolating polynomials are used because they preserve
the shape and the monotonicity of the curve. Figure 16 shows
three different approximations to the function EI1�x� for the sec-
ond mode. Beams A and B are continuous beams based on cubic
interpolation polynomials. Beam A has a sharp variation near the
point of singularity and beam B has a mild variation. Beam C is
modeled as a step beam, where the value of EI1 changes abruptly
at the point of singularity. For this beam, the function EI1�x� is
replaced by its average values on either sides of the singularity.
The second-mode frequencies of these beams are calculated using
the p-version FEM. The calculated frequencies are shown in Table
5. The percentage deviation of these frequencies from the exact
value is less than 0.1%.

Fig. 12 Fundamental mesh for the fourth mode h-version FEM,
and the first two refinements

Fig. 13 Convergence characteristics and residue of nodal displacements
for fourth mode with h-version finite element code

Fig. 14 Variation in height and breadth of a rotating beam equivalent to a
uniform nonrotating beam for the first mode

Fig. 15 Top and side views of a rotating beam equivalent to a uniform
rotating beam for the first mode
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The corresponding mode-shapes, �, of these beams are normal-
ized with ��L�=1 and compared with the exact mode-shapes of
Fig. 6. The difference in the value of � and the exact mode-shape
is calculated as a vector of residues, �R�, at 600 equidistant points
in the domain. The norm of the vector, �R�, calculated by 	
iR�i�2

is found to be very small and is shown in Table 5. Beam B gives
the best match for frequency and Beam A gives the best match for
the mode-shape. However, the stepped Beam C also gives reason-
able results and shows the possibility of countering the centrifugal
force effects in a simple manner. Therefore, we see that by ap-
proximating the flexural stiffness functions derived in this paper,
we can obtain realistic rotating beams whose mode-shapes and
frequencies match with that of second mode of the uniform non-
rotating beam.

Next, we look at the dimensions of these beams if they have
rectangular cross sections. The height and breadth variations, h�x�
and b�x�, calculated from Eqs. �29� and �30� are shown in Fig. 17.
We can see that the variation in the dimensions is reasonable and
Beam C, and to some extent Beam B, is physically feasible.
Higher thickness at the root and higher breadth in the outboard
region are required for Beam C. Note that the nonrotating beam
has dimensions b=24 mm and h=10 mm. By giving a small
level of nonuniformity, the centrifugal effects for the second mode
are countered.

6.3 Third Mode. The flexural stiffness function for the third
mode has two internal singularities, thus making it impossible to
construct a physical beam with this flexural stiffness variation.
Approximations to the function as above may be constructed, re-
sulting in Beams A–C �Fig. 18�. Beam A is closer to the exact
flexural stiffness function but has steeper variation at the singular
points. Beam B varies mildly at the singular points. Beam C is a
step beam with three different flexural stiffness constants along its
length. The estimated frequencies and the norm of the residues of

the third mode-shape, with 600 equidistant points in the domain,
are shown in Table 6. Here, Beam A gives the best match for both
frequency and mode-shape, followed closely by Beam B. Beam C
gives an acceptable match. All the frequency deviations are less
than or equal to 0.1%.

The height and breadth variation in these beams with square
cross sections is shown in Fig. 19. Again, we see that by adding a

Fig. 16 Realistic beams: approximations to the exact function for the sec-
ond mode

Table 5 Frequencies and mode-shapes of the approximate
beams for mode 2

Approximation
Estimated frequency

�rad/s�
% deviation
from exact

Norm of residues
of mode-shape

Beam A 892.4341 0.0021 8.45�10−4

Beam B 892.4176 0.0003 1.73�10−3

Beam C 893.2886 0.0979 3.89�10−1 Fig. 17 Variation in height and breadth of a rotating beam
equivalent to a uniform nonrotating beam for the second mode
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small level of nonuniformity in the dimensions of the rotating
beam, the effect of centrifugal stiffening for the third mode can be
countered.

6.4 Fourth Mode. The fourth mode flexural stiffness function
is approximated in three ways, as in Fig. 20. The corresponding
frequencies and the residue of the mode-shapes estimated for
these beams are given in Table 7. Beam A is closer in frequency
and mode-shape to the exact values. Beams B and C give reason-
able approximations too. The frequency deviations are less than
0.025% for all the beams.

The height and breadth variation in the beams is illustrated in
Fig. 21. We see that Beam C gives a physically feasible cross
section. We also see that in each case, there are N−1 discontinui-
ties corresponding to the singularities for mode N. Also, the di-
mensions of the stepped beam are close to the nonrotating uniform
beam.

6.5 Destiffening Effects. We have shown that physically re-
alizable rotating beams with the same eigenpair of nonrotating
beams exist for the first four modes. Similar beams can be found
for higher modes. By using the cross sections obtained in this
work, any mode can be destiffened to alleviate the effect of cen-
trifugal stiffening. This can be useful in design where it is some-
times necessary to move one mode away from a particular value
of frequency being a multiple of the rotation speed. To study this
possibility, we find the stiffness reduction required for a uniform
rotating beam to match the frequencies of the nonuniform beam
for the first four modes. We reduce the uniform beam stiffness
from a value of EI2=400 N m2 to EI1

�r� so that for a given mode,
the frequency reduction is identical to that obtained using the
derived flexural stiffness of the stepped beam, EI1

�C� for modes
2–4, and the exact beam, EI1

�exact�, for mode 1.

Table 8 compares the first four frequencies of the two beams.
Note that the uniform rotating beam with a stiffness constant of
400 N m2 has first four natural frequencies as 148.2320 rad/s,
897.5588 rad/s, 2503.8612 rad/s, and 4901.8567 rad/s, respec-
tively. We can see from Table 8 that the frequencies of higher
modes such as mode 4 can be reduced with less effect on the

Fig. 18 Realistic beams: approximations to the exact function for the third
mode

Table 6 Frequencies and mode-shapes of the approximate
beams for mode 3

Approximation
Estimated frequency

�rad/s�
% deviation
from exact

Norm of residues
of mode-shape

Beam A 2498.8163 0.0011 1.10�10−3

Beam B 2498.9089 0.0048 1.48�10−3

Beam C 2501.3019 0.1006 1.06�10−2 Fig. 19 Variation in height and breadth of a rotating beam
equivalent to a uniform nonrotating beam for the third mode
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lower mode frequencies �1–3� compared with the uniform beam.
For the lower modes such as mode 1, the exact beam yields larger
reduction in the frequencies for the higher modes �2–4�. In gen-
eral, if we target mode j for matching with the nonrotating fre-
quency, the modes below j will show less reduction than the uni-
form beam and for modes greater than j, the reduction will be
greater. Thus the beam profiles can be used in tailoring beams to
achieve targeted frequencies.

The stiffness constant of the uniform beam, labeled EI1
�r�, is

compared with the stiffness variation in the nonuniform beams in
Fig. 22. It is observed from Fig. 22 that the derived flexural stiff-
ness functions provide a means to destiffen the rotating beams
without compromising for the stiffness of the beam at the root. In
fact, for modes 2–4, the root stiffness is higher than that of the
baseline rotating beam �400 N m2�. Since the root stiffness is
critical for handling stresses in cantilever beams, being able to
reduce frequencies while not having to reduce root stiffness is a
desirable feature.

7 Conclusions
In the present paper, we have shown that there exist rotating

beams with the same eigenpair as corresponding uniform nonro-
tating beams for a given mode. The flexural stiffness, EI1�x�, in
this rotating beam varies differently for different mode-shapes and
the beams have the same length and mass per unit length as the
uniform nonrotating beam. The flexural stiffness function, EI1�x�,
of the equivalent rotating beams can be used to test numerical
codes written for rotating beams. For the fundamental mode, a
physically feasible equivalent rotating beam exists, but for higher
modes, the flexural stiffness has internal singularities. We have
verified the p-version and h-version FEMs for the first four
modes. For p-version FEM, the singularities present in the higher

Fig. 20 Realistic beams: approximations to the exact function for the
fourth mode

Fig. 21 Variation in height and breadth of a rotating beam
equivalent to a uniform nonrotating beam for the fourth mode

Table 7 Frequencies and mode-shapes of the approximate
beams for mode 4

Approximation
Estimated frequency

�rad/s�
% deviation
from exact

Norm of residues
of mode-shape

Beam A 4896.6340 0.0015 6.13�10−4

Beam B 4896.5547 0.0001 9.63�10−4

Beam C 4897.8586 0.0251 9.21�10−3
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modes can be avoided by appropriate placement of Gauss-
quadrature points for numerical integration. For h-version FEM,
the singularities can be avoided by placing the nodes at the sin-
gularity locations and taking the element flexural stiffness at its
midpoint. The codes converge to the expected value of the first
four natural frequencies of the nonrotating beam for which the
exact solution is available. When the exact nonrotating beam so-
lutions are obtained, we can be assured that the governing differ-
ential equation of the rotating beam has been accurately solved by
the numerical method. This is because the beam deflections can be
expressed in terms of mode-shapes as the basis functions. It is also
found that approximate profiles of the flexural stiffness distribu-
tions can be obtained, which yield physically feasible beams.
Such beams could be useful for destiffening rotating beams with-
out requiring considerable stiffness loss at the root, which is oth-
erwise needed by uniform beams.

Appendix A
The equation for the jth mode-shape of a uniform nonrotating

cantilever beam from Eq. �9� can be written as

� j�x� = Cj�cos�� jx� − cosh�� jx� + K�sin�� jx� − sinh�� jx���
�A1�

where

K =
sin�� jL� − sinh�� jL�
cos�� jL� + cosh�� jL�

�A2�

Differentiating Eq. �A1� twice with respect to x gives

� j��x� = − Cj� j
2�cos�� jx� + cosh�� jx� + K�sin�� jx� + sinh�� jx���

�A3�

Substituting for x, L−y, in Eq. �A2� and expanding the resultant
expression, we obtain

� j��x� = − Cj� j
2�a1 cos�� jy� + a2K sin�� jy� + a3 cosh�� jy�

+ a4K sinh�� jy�� �A4�

where

a1 = cos�� jL� + K sin�� jL� �A5�

a2 =
sin�� jL�

K
− cos�� jL� �A6�

a3 = cosh�� jL� + K sinh�� jL� �A7�

Table 8 Frequencies and mode-shapes of the approximate beams for mode 4

Mode EI1�x�
�1

�rad/s�
�2

�rad/s�
�3

�rad/s�
�4

�rad/s�

Mode 1
EI1

�exact��x� 142.4015 856.1476 2386.1690 4670.2321
EI1

�r��x� 142.4015 859.6891 2397.4121 4693.0495

Mode 2
EI1

�C��x� 148.3470 893.2886 2488.1736 4873.0676
EI1

�r��x� 147.5737 893.2886 2491.8591 4878.3147

Mode 3
EI1

�C��x� 148.0982 897.1842 2501.3019 4894.2987
EI1

�r��x� 148.0813 896.6487 2501.3019 4896.8352

Mode 4
EI1

�C��x� 148.0853 897.2456 2502.4406 4897.8586
EI1

�r��x� 148.0827 896.8270 2501.8171 4897.8586

Fig. 22 Destiffening effects of flexural stiffness variations for various
modes compared with uniform rotating beam „EI1

„r…
…
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a4 = −
sinh�� jL�

K
− cosh�� jL� �A8�

Squaring the characteristic equation, cos�� jL�cosh�� jL�=−1, and
using basic trigonometric identities, we obtain

�1 − sin2�� jL���cosh2�� jL�� = 1 �A9�

⇒sin2�� jL�cosh2�� jL� = sinh2�� jL� �A10�

⇒
sin2�� jL�
cos2�� jL�

= sinh2�� jL� �A11�

⇒sin2�� jL� = cos2�� jL�sinh2�� jL� �A12�

Since �� jL� is positive for all modes, we have sinh�� jL��0 and
cosh�� jL��0. This with cos�� jL�cosh�� jL�=−1 yields cos�� jL�
�0. From Eqs. �A10� and �A12�, we obtain sin�� jL�cosh�� jL�
= �sinh�� jL� and sin�� jL�= �cos�� jL�sinh�� jL�. The algebraic
sign on the right-hand side of these equations is decided by the
sign of sin�� jL�.

Substituting K from Eq. �A2� in Eq. �A5�, we obtain

a1 = cos�� jL� +
sin�� jL� − sinh�� jL�
cos�� jL� + cosh�� jL�

sin�� jL�

=
cos2�� jL� − 1 + sin2�� jL� − sin�� jL�sinh�� jL�

cos�� jL� + cosh � jL

=
− sin�� jL�sinh�� jL�

cos�� jL� + cosh�� jL�
=

− sin�� jL�sinh�� jL�
cos�� jL� − 1

cos�� jL�

=
sinh�� jL�cos�� jL�

sin�� jL�
= � 1 �A13�

Expanding other coefficients in a similar manner yields a2= �1,
a3= �1, and a4= �1. Hence Eq. �A4� simplifies as

� j��x� = � Cj� j
2�cos�� jy� + K sin�� jy� − cosh�� jy� − K sinh�� jy��

�A14�
Therefore,

� j��x� = � � j
2��y� �A15�

Hence, ��y�=0⇔� j��x�=0. The assumption y=L−x completes
the proof.

Appendix B
The n point Gauss-quadrature rule for numerical integration

over the interval ��1,1� is given by

�
−1

1

f�x�dx  

i=0

n

wif�ti� �B1�

The points ti are the eigenvalues of the matrix J �29�, where
matrix J is defined by

J =�
0 a1 0 . . . 0 0

a1 0 a2 . . . 0 0

0 a2 0 . . . 0 0

] ] ] � ] ]

0 0 0 . . . 0 an

0 0 0 . . . an 0

�
�n+1���n+1�

�B2�

and the constants ai are defined by ai= i /	4i2−1. The weights wi
are then given by

wi = 2�V1,i�2 �B3�

where V is the matrix of the normalized eigenvectors of J.

The transformation rules for the Gaussian quadrature points and
weights for an integral over �a ,b� are given by

wi��a,b� = wi��−1,1� �
b − a

2
�B4�

ti�a,b = ti��−1,1� �
b − a

2
+

a + b

2
�B5�

For the domain �0,1�, these formulas become

wi��0,1� = wi��−1,1� �
1
2 �B6�

ti�0,1 = ti��−1,1� �
1
2 + 1

2 �B7�

The Gauss-quadrature points, sorted in an increasing order, and
the corresponding weights with n=30 for the domain �0,1� are
given in Table 9.
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Fully Lagrangian Modeling of
Dynamics of MEMS With Thin
Beams—Part I: Undamped
Vibrations
Micro-electro-mechanical systems (MEMSs) often use beam or plate shaped conductors
that can be very thin—with h /L�O�10–2–10–3� (in terms of the thickness h and length L
of the beam or side of a square plate). Such MEMS devices find applications in microsen-
sors, micro-actuators, microjets, microspeakers, and other systems where the conducting
beams or plates oscillate at very high frequencies. Conventional boundary element
method analysis of the electric field in a region exterior to such thin conductors can
become difficult to carry out accurately and efficiently—especially since MEMS analysis
requires computation of charge densities (and then surface traction) separately on the top
and bottom surfaces of such beams. A new boundary integral equation has been proposed
to handle the computation of charge densities for such high aspect ratio geometries. In
the current work, this has been coupled with the finite element method to obtain the
response behavior of devices made of such high aspect ratio structural members. This
coupling of electrical and mechanical problems is carried out using a Newton scheme
based on a Lagrangian description of the electrical and mechanical domains. The nu-
merical results are presented in this paper for the dynamic behavior of the coupled
MEMS without damping. The effect of gap between a beam and the ground, on mechani-
cal response of a beam subjected to increasing electric potential, is studied carefully.
Damping is considered in the companion paper (Ghosh and Mukherjee, 2009, “Fully
Lagrangian Modeling of Dynamics of MEMS With Thin Beams—Part II: Damped Vibra-
tions,” ASME J. Appl. Mech. 76, p. 051008). �DOI: 10.1115/1.3086785�

Keywords: boundary integral equations, boundary element method, singular integrals,
micro-electro-mechanical systems, aspect ratio, thin beam, Newton scheme

1 Introduction

The field of micro-electro-mechanical system �MEMS� is a
very broad one that includes fixed or moving microstructures,
encompassing micro-electro-mechanical, microfluidic, micro-
electro-fluidic-mechanical, micro-opto-electro-mechanical, and
micro-thermo-mechanical devices and systems. MEMS usually
consists of released microstructures that are suspended and an-
chored, or captured by a hub-cap structure and set into motion by
mechanical, electrical, thermal, acoustical or photonic energy
source�s�.

Typical MEMS structures consist of arrays of thin plates with
cross sections in the order of microns and lengths in the order of
ten to hundreds of microns �see, for example, Fig. 1�. Sometimes,
MEMS structural elements are beams. An example is a small rect-
angular silicon beam with length in the order of millimeters and
thickness of the order of microns, which deforms when subjected
to electric fields. Owing to its small size, significant forces and/or
deformations can be obtained with the application of low voltages
��10 V�. Examples of devices that utilize vibrations of such
beams are comb drives �see Fig. 1�, synthetic microjets �2� �for
chemical mixing, cooling of electronic components, micropropul-
sion, turbulence control, and other macroflow properties�, micros-
peakers �3�, etc.

Numerical simulation of electrically actuated MEMS devices
have been carried out for nearly two decades using the boundary
element method �BEM� �see, e.g., Refs. �4–8�� to model the ex-
terior electric field and the finite element method �FEM� �see, e.g.,
Refs. �9–11�� to model deformation of the structure. The commer-
cial software package MEMCAD �12�, for example, uses the com-
mercial FEM software package ABAQUS for mechanical analysis,
together with a BEM code FASTCAP �13� for electric field analysis.
Other examples of such work are Refs. �14–16�, as well as Refs.
�12,17�, for the dynamic analysis of MEMS.

The focus of this paper is the study of dynamic response of
MEMS devices made up of very thin conducting beams. This
requires BEM analysis of the electric field exterior to these thin
conducting beams. A convenient way to model such a problem is
to assume beams with vanishing thickness and solve for the sum
of the charges on the upper and lower surfaces of each beam �18�.
The standard boundary integral equation �BIE� with a weakly sin-
gular kernel is used here and this approach works well for deter-
mining, for example, the capacitance of a parallel plate capacitor.
For MEMS calculations, however, one must obtain the charge
densities separately on the upper and lower surfaces of a beam
since the traction at a surface point on a beam depends on the
square of the charge density at that point. The gradient BIE is
employed in Ref. �19� to obtain these charge densities separately.
The formulation given in Ref. �19� is a BEM scheme that is par-
ticularly well suited for MEMS analysis of very thin plates—for
h /L�0.001—in terms of the length L �of a side of a square plate�
and its thickness h. A similar approach has also been developed
for MEMS and nano-electro-mechanical system �NEMS� with
very thin beams �20�. Similar work has also been reported by

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received July 18, 2008; final manuscript
received January 5, 2009; published online June 18, 2009. Review conducted by
Robert M. McMeeking.

Journal of Applied Mechanics SEPTEMBER 2009, Vol. 76 / 051007-1Copyright © 2009 by ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Chen et al. �21� in the context of determining fringing fields and
levitating forces for two-dimensional �2D� beam shaped conduc-
tors in MEMS combdrives.

The coupled BEM/FEM methods employed in many of the ref-
erences cited above perform a mechanical analysis on the unde-
formed configuration of a structure �Lagrangian approach� and an
electrical analysis on the deformed configuration �Eulerian ap-
proach�. A relaxation method is then used for self-consistency
between the two domains. Therefore, the geometry of the structure
must be updated before an electrical analysis is performed during
each relaxation iteration. This procedure increases computational
effort and introduces additional numerical errors since the de-
formed geometry must be computed at every stage. Li and Aluru
�22� first proposed a Lagrangian approach for the electrical analy-
sis as well, thus obviating the need to carry out calculations based
on the deformed shapes of a structure. Two and three-dimensional
�3D� quasistatic Lagrangian exterior BEM analysis was addressed
in Refs. �23,24�, while a fully coupled 2D quasistatic MEMS
analysis has been carried out in Ref. �22�. A fully coupled 2D
dynamic Lagrangian MEMS analysis has been carried out by De
and Aluru �25�. Additional advantages of the fully Lagrangian
approach, for dynamic analysis of MEMS, are described in Ref.
�25�, in which a Newton method has been developed and com-
pared with the relaxation scheme. It must be noted that Refs.
�23–26� employ a standard �not thin feature� BEM. Finally, qua-
sistatic deformation of thin plates, using the thin plate BEM is
addressed in Ref. �27�.

This paper is an attempt to analyze and simulate vibrations of a
practical MEM system involving a coupling of the electrical and
mechanical problem. Additional coupling with fluid fields exterior
to the system is considered in Ref. �28�. The external electric field
is modeled using the Lagrangian version of the thin beam BEM
approach �20� together with a hypersingular postprocessing gradi-
ent BIE to find the individual charges. The mechanical problem is
tackled using a moderately large deflection FEM analysis. Finally,
a Newton scheme developed analogous to Ref. �25� is used to
solve the entire coupled nonlinear problem.

This paper starts with regularization of the conventional and
hypersingular BIEs for potential theory in an infinite region out-
side the thin conducting beams. The equations are then reformu-
lated in a total Lagrangian framework. A finite element scheme is
then presented for the mechanical deformation of the structure.
The paper then proceeds to explain the Newton scheme for cou-
pling the electrical and mechanical domains. The numerical re-
sults are then presented and discussed. This paper concludes with
a section on discussions of the results and scope for future re-
search.

2 Electrical Problem in the Exterior Domain
Figure 2 shows �as an example of a MEMS device� a deform-

able clamped beam over a fixed ground plane. The undeformed
configuration is B with boundary �B. The beam deforms when a
potential V is applied between the two conductors, and the de-
formed configuration is called b with boundary �b. The charge
redistributes on the surface of the deformed beam, thereby chang-
ing the electrical force on it and this causes the beam to deform
further. The system then undergoes vibrations and the complete
analysis of the system is done using the Newton scheme.

2.1 Electric Field BIE in a Simply Connected Body. The
boundary element formulation of the electric problem can be de-
rived from the Laplace equation, which governs the potential in
the region outside a conductor.

2.1.1 Conventional BIE: Indirect Formulation. Referring to
Fig. 3, for a source point ��B �with bounding surface �B�, one
has the indirect BIE:

���� =�
�B

−
ln�r��,y��

2��
��y�ds�y� �1�

where y is a field point, � is the potential, r�� ,y�=y−�, r= �r�, � is
the permittivity of the medium, ds is the area of an infinitesimal
surface element on �B, and � is the �unknown� surface density
function on �B.

Fig. 1 Parallel plate resonator: geometry and detail of the par-
allel plate fingers from Ref. †1‡
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Fig. 2 Deformable clamped beam over a fixed ground plate
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Fig. 3 Notation used in boundary integral equations
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2.1.2 Gradient BIE: Indirect Formulation. Taking the deriva-
tive of the potential � at the source point leads to an auxiliary
hypersingular equation:

������ =�
�B

−
��y�
2��

�� ln�r��,y��ds�y� =�
�B

��y�r��,y�
2�r2��,y��

ds�y�

�2�

Note that, in general, the function ��y� is not the charge density. It
becomes equal to the charge density when B is the infinite region
exterior to the conductors. This is discussed in Sec. 2.2.

2.2 BIEs in Infinite Region Containing Two Thin Conduct-
ing Beams. Now consider the situation shown in Fig. 4. Of inter-
est is the solution of the following Dirichlet problem for Laplace’s
equation:

�2��x� = 0, x � B, ��x�prescribed for x � �B �3�

where B is now the region exterior to the two beams. The unit
normal n to B is defined to point away from B �i.e., into the
beam�.

2.2.1 Regular BIE: Source Point Approaching a Beam Surface
s1

+ . It has been shown by Bao and Mukherjee �20� that for this
case,

��x+� = −�
s1
+−ŝ1

+

ln r�x+,y���y�
2��

ds�y� −�
ŝ1
+

ln r�x+,y���y�
2��

ds�y�

−�
s2
+

ln r�x+,y���y�
2��

ds�y� �4�

Here ��y�=��y+�+��y−�, where � is now the charge density at a
point on the beam surface. The second integral in Eq. �4� is loga-
rithmically singular and the rest are regular except when the beam
thickness and the gap become very small.

A similar equation can be written for x+�s2
+. For the case

shown in Fig. 4, however, it is not necessary since ��y� is equal
and opposite on the two beams. Therefore, for this case, Eq. �4� is
sufficient to solve for � on both the beams.

2.2.2 Hypersingular BIE: Source Point Approaching a Beam
Surface s1

+. It is first noted that for x+�sk
+�sk

−, k=1,2,

��x� = �
��

�n
�x� = �n�x� · ���������=x �5�

Consider the limit �→x+� ŝ1
+�s1

+. It is important to realize that
this limit is meaningless for point x on the edge of a beam, since
the charge density is singular on its edges. One obtains the fol-
lowing HBIE:

��x+� =�
s1
+−ŝ1

+

��y�r�x+,y� · n�x+�
2�r2�x+,y�

ds�y�

+�
ŝ1
+

r�x+,y����y� · n�x+� − ��x� · n�y��
2�r2�x+,y�

ds�y�

+
��x�
2�

��ŝ1
+,x+� +�

s2
+

��y�r�x+,y� · n�x+�
2�r2�x+,y�

ds�y� �6�

In the above, the angle subtended by the line element s1
+ at the

point x+ �see �19� and �20� and Fig. 5� is

��ŝ1
+,x+� =�

ŝ1
+

r�x+,y� · n�y�
r2�x+,y�

ds�y� = �A + �B=
�7�

Here, the symbol �= denotes the finite part of the integral in the
sense of Mukherjee �29�. Also �see Fig. 5�, a unit vector u,
through the point x+, is chosen such that it intersects ŝ1

+. Now, 	 is
the angle between the positive u vector and r�x+ ,y� with y� ŝ1

+.
This angle can be obtained from the equation

cos�	�y�� =
r�x+,y� · u

r�x+,y�
�8�

Writing Eq. �6� at x− together with some algebraic manipulation
gives

1

2
���x+� − ��x−�� =�

s1
+−ŝ1

+

��y�r�x+,y� · n�x+�
2�r2�x+,y�

ds�y�

+�
ŝ1
+

r�x+,y����y� · n�x+� − ��x� · n�y��
2�r2�x+,y�

ds�y�

−
��x�
2�

�� − ��ŝ1
+,x+��

+
1

++
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+�
s2
+

��y�r�x+,y� · n�x+�
2�r2�x+,y�

ds�y� �9�

Equation �4� gives the sum of the charge densities and the HBIE
equation �9� can be used as a postprocessing step to compute the
values of individual charge densities on each of the beams.

2.3 Electrostatic Boundary Integral Equation in the La-
grangian Framework. Converting Eqs. �4� and �9� in the La-
grangian framework can be started by using Nanson’s law �30�

nds = JN · F−1dS �10�

Here n and N are the unit normal vectors to �b and �B, at the
generic points x and X, respectively, F=�x /�X is the deformation
gradient, J=det�F�, and dS is an area element on �B. Also, X and
x denote the coordinates in the undeformed and deformed con-
figurations, respectively. From Eq. �10�, it follows that

ds = J�N · F−1�dS �11�

Next, define 
, the charge density per unit undeformed surface
area. Since 
dS=�ds, one has


 = J��N · F−1� �12�

Also define

B = 
+ + 
− �13�

2.3.1 Lagrangian Version of the Regular BIE. Using the rela-
tions developed in Sec. 2.2, one arrives at the Lagrangian version
of Eq. �4�,

��X+� = −�
S1

+−Ŝ1
+

ln R�X+,Y�B�Y�
2��

dS�Y�

−�
Ŝ1

+

ln R�X+,Y�B�Y�
2��

dS�Y�

−�
S2

+

ln R�X+,Y�B�Y�
2��

dS�Y� �14�

where

r�x�X�,y�Y�� 	 R�X,Y� = y�Y� − x�X� = Y + u�Y� − X − u�X�

= R0�X,Y� + u�Y� − u�X� �15�

R0�X,Y� = Y − X �16�

r�x�X�,y�Y�� 	 R�X,Y� = �R�X,Y�� �17�

with u denoting the displacement at a point in B.
Also,

h�y� = −
�2�y�

2�
n �18�

�
�B

HdS =�
�b

hds �19�

where h and H are the tractions per unit deformed and unde-
formed surface areas, respectively. Using Eqs. �10�, �11�, �18�, and
�19�, one gets

H = −
J�2N · F−1

2�
= −


2

2J�

N · F−1

�N · F−1�
�20�

2.3.2 Lagrangian Version of the Gradient BIE. The Lagrang-
ian version of the Eq. �9� is derived as follows:

First term =�
S1

+−Ŝ1
+

B�Y�R�X+,Y� · � N·F−1

�N·F−1� ��X+�

2�R2�X+,Y�
dS�Y� �21�

Second term =�
Ŝ1

+

R�X+,Y�B�Y�
2�R2�X+,Y�

· 
 N · F−1

�N · F−1���X+�dS�Y�

−�
Ŝ1

+

R�X+,Y�
2�R2�X+,Y�

·
B�X�

J�X+��N · F−1�X+��

· J�Y��N · F−1��Y�dS�Y� �22�

Third term = −
B�X�

2�J�X+��N · F−1��X+�
��Ŝ1

+,X+� �23�

The fourth term can be treated in the same way as the first.
Now, multiply the entire equation by J�X+��N ·F−1��X+�, use the
midplane values1 for F�X+�=F�X−�, and use the fact that N�X+�
=−N�X−� to simplify the equation further. The resulting equation
has the form

1

2
�
�X+� − 
�X−��

=�
S1

+−Ŝ1
+

B�Y�R�X+,Y� · J�X+��N · F−1�X+��
2�R2�X+,Y�

dS�Y�

+�
Ŝ1

+

B�Y�R�X+,Y� · J�X+��N · F−1�X+��
2�R2�X+,Y�

dS�Y�

−�
Ŝ1

+

B�X�R�X+,Y� · J�Y��N · F−1�Y��
2�R2�X+,Y�

dS�Y�

−
B�X�
2�

�� − ��Ŝ1
+,X+��

+�
S2

+

B�Y�R�X+,Y� · J�X+��N · F−1�X+��
2�R2�X+,Y�

dS�Y� �24�

It must be noted that the second and third terms must be evalu-
ated together for numerical purposes. The angle can be easily
computed from taking dot products of the position vectors of the
required points on the surface of the body.

3 Mechanical Problem for the Elastic Beam
Nonlinear deformation of a beam with no initial axial force is

discussed in this section. The beam is linearly elastic, has immov-
able ends, and is of uniform cross section. The cross section is
symmetric such that there is no twisting of the beam under applied
bending moments. Also, u�x� is the axial deformation and w�x� is
the transverse displacement of the midline of the beam.

3.1 The Model. The kinematic equations can be derived start-
ing from the following nonlinear strain-displacement equation
�31�:

�ij =
1

2

 �ui

�xj
+

�uj

�xi
� +

1

2

 �um

�xi
·
�um

�xj
� �25�

This leads to the kinematic equations:

�xx = u,x + 1/2 · �w,x�2 �26�

1Also called the membrane assumption.
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�x = − w,xx �27�

Here, �xx is the midline axial strain and �x is the curvature. Also
subscript ,x denotes the derivative with respect to the axial coor-
dinate x. The strain energy E�s� and the kinetic energy E�k� of an
uniform beam of length L are

E�s� =
ES

2 �
0

L

��u,x�2 + u,x�w,x�2 + �1/4��w,x�4�dx +
EI

2 �
0

L

�w,xx�2dx

�28�

E�k� =
�S

2 �
0

L

��u̇�2 + �ẇ�2�dx �29�

Here, E, �, L, S, and I are Young’s modulus, density �mass per
unit volume�, length, area of cross section, and area moment of
inertia of the cross section of the beam, respectively, and a super-
posed dot denotes differentiation with respect to time t. Similarly
the work expression can be written as

W =�
0

L

�Hxdu + Hydw + Mdw,x�dx �30�

Here Hx, Hy, and M are the axial force, transverse force, and
bending moment, respectively.

3.2 Finite Element Model for Beams With Immovable
Ends. The procedure followed here, for FEM discretization of
vibrating beams, is similar to standard methods �see, e.g., Ref.
�10��. However, in this particular problem, the standard beam el-
ement needs a slight modification. This modification is necessi-
tated because the usual linear interpolation for the axial deforma-
tion results in discontinuities during residual computation in
Newton’s scheme. Hence, a quadratic interpolation is taken for the
axial deformation. A standard Hermitian interpolation is used for
bending. Hence, the beam element used in this present problem
has a total of seven degrees of freedom: three axial at three axial
nodes and two transverse and two rotational degrees of freedom at
the end nodes. These degrees of freedom can be written as

u = �u1 u2 u3 �

w = �w1 w2 �

 = �w,x1 w,x2 �
Now, the values of the primary deformations u and w inside the
elements can be interpolated from the above nodal values using

�u�x,t�
w�x,t�  = �N�I��x� 0

0 N�0��x�  · � q�I��t�
q�O��t�  �31�

wherein

�N�I��x�� = �N1 N2 N3 �, �N�O�� = �P1 P2 P3 P4 �
�32�

�q�I��t�� = �u1 u2 u3 �T, �q�O��t�� = �w1 1 w2 2 �
�33�

Here Nk and Pk are the quadratic Lagrange and cubic �Hermite
polynomials� interpolation functions, respectively, and q�I� and
q�O� contain the appropriate nodal degrees of freedom. Now, de-
fine

D = w,x, �G� = �N,x
�O��, �B�I�� = �N,x

�I��, �B�O�� = − �N,xx
�O��

�34�
Substitution of the interpolations from Eq. �31� into the work
energy expressions from Eqs. �28�–�30� and use of Hamilton’s
principle lead to the following element level equations �32�:

�M�I� 0

0 M�0�  · � q̈�I��t�
q̈�O��t�

 + �K�I� 0

0 K�0�  · � q�I��t�
q�O��t� 

+ � 0 KIO

2K�IO�T K�NI�  · � q�I��t�
q�O��t�  = � P�I��t�

P�O��t�  �35�

In the above:

�M�I�� =
�S

2 �
0

L

�N�I��T�N�I��dx

�M�O�� =
�S

2 �
0

L

�N�O��T�N�O��dx �36�

�K�I�� = ES�
0

L

�B�I��T�B�I��dx

�K�O�� = EI�
0

L

�B�O��T�B�O��dx �37�

�K�IO�� =
ES

2 �
0

L

�B�I��T�DG�dx

�K�NI�� =
ES

2 �
0

L

�DG�T�DG�dx �38�

�P� =�
0

L 
N�I� 0

0 N�O� �T�H̄x

H̄y

M̄
�dx �39�

where L is the length of the finite element and �H̄� is the resultant
traction on the midline of the beam. If one denotes �= �I /S�1/2 as
the radius of gyration of the beam cross section, one can observe
a few interesting points about the relations just derived. The in-
plane �axial� and out-of-plane �bending� matrices �K�I�� and �K�O��
are � to S and S�2, respectively; the matrix �K�IO���AS, where A
is the beam deflection, represents coupling between the axial and
bending displacements; and the matrix �K�NI���A2S arises purely
from the nonlinear axial strains. It is well known that for the linear
theory K�O��K�I� as �→0. It is very interesting, however, to note
that if A /� remains O�1� �moderately large deformation�, the
bending matrix K�O�, which arises from the linear theory, and the
matrix K�NI� from the nonlinear theory, remain of the same order
as �→0 �32�.

4 Newton’s Scheme for Solving the Coupled Problem
Newton’s method is an iterative root-finding algorithm that uses

the first few terms of the Taylor series of a function f :R→R in
the vicinity of a suspected root. The algorithm can be written for
a one dimensional case as

xn+1 = xn −
f�xn�
f��xn�

, n � 0

For the multivariate case, f :Rp→Rp,

x � Rp:f�x� = 0 � Rp

�40�
xn+1 = xn − Jf�xn�−1f�xn�, n � 0

where Jf�x� denotes the Jacobian of the function f�x�. It is
straightforward to recast Eq. �40� in the context of the current
problem by replacing the vector function f�x� by the relevant vec-
tor function for the present problem.
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4.1 Residuals and Their Gradients. Newton’s scheme is
used to solve the entire system of equations of the coupled
electro-mechanical problem together. The relevant vector func-
tions used in the present case are called residuals. Equation �14�
gives the electrical residual and Eq. �35� gives the mechanical
residual. In addition, the auxiliary equation �24� is used in con-
junction with Eq. �20� as an interdomain coupling equation. It
must be noted that the primary variables are B and U= �u w �,
respectively, the electrical and mechanical variables.

4.1.1 The Electrical Residual and Its Derivatives. The electri-
cal residual can be formed from Eq. �14� as

RE�U,B� = ��X+� +�
S1

+−Ŝ1
+

ln R�X+,Y�B�Y�
2��

dS�Y�

+�
Ŝ1

+

ln R�X+,Y�B�Y�
2��

dS�Y�

+�
S2

+

ln R�X+,Y�B�Y�
2��

dS�Y� �41�

To compute the gradient of the electrical residual, one can rewrite
Eq. �41� in standard BEM form using suitable interpolation func-
tions:

�RE�U�X1
+�,B�X1��
]

RE�U�XN
+ �,B�XN��

� = ���X1
+�

]

�XN
+ � + ��11 �1N

] � ]

�N1 �NN
��B�X1�

]

B�XN�
�

�42�

where subscripts 1 , . . . ,N denote the value of the variable at the
corresponding node positions and ��� is the matrix of BEM inte-
gration constants, which depends on both the geometry and inter-
polation functions used in the problem. One can differentiate Eq.
�42� with respect to B�X� and arrive at the following expression:

�RE

�B
�U,B� = ��� �43�

The other residual can be computed by differentiating Eq. �41�
with respect to the mechanical variable U. Now using

�R

�U�X�
= −

R

R
�44a�

�R

�U�Y�
=

R

R
�44b�

one gets

�RE

�U�X+�
�U,B� = −�

S1
+−Ŝ1

+

R�X+,Y�B�Y�
2��R2 dS�Y�

−�
Ŝ1

+

R�X+,Y�B�Y�
2��R2 dS�Y�

−�
S2

+

R�X+,Y�B�Y�
2��R2 dS�Y�

+�
Ŝ1

+

R�X+,Y�B�X�
2��R2 dS�Y� .

=

=
�45�

The first three terms on the right hand side of Eq. �45� are ob-
tained by applying Eq. �44a� to Eq. �41�, while the last one is
obtained by applying Eq. �44b� and using �RE /�U �Y=X+. The sec-
ond and the fourth term on the right hand side of Eq. �45� can be
combined into a single term:

−�
Ŝ1

R�X+,Y��B�Y� − B�X��
2��R2 dS�Y� �46�

which is only weakly singular.

4.1.2 The Mechanical Residuals and Their Gradients. The
mechanical residual can be written as

RM�U,B� = �M�I� 0

0 M�0�  · � q̈�I��t�
q̈�O��t�

 + �K�I� 0

0 K�0�  · � q�I��t�
q�O��t� 

+ � 0 KIO

2K�IO�T K�NI�  · � q�I��t�
q�O��t�  − �P� �47�

The last term of the above equation is the load term and con-
tains information of the electrical influence. Using Eq. �20� as
well as the relations,

H = H+ + H−, N = N+ = − N−, F = F+ = F− �48�
one gets

H = −
AB

2J�

N · F−1

�N · F−1�2
�49�

where A=
+−
−.
From Eq. �47�,

�RM

�B
�U,B� = −

��P�
�B

�50�

The gradient �RM /�U has two parts. The first part comes from
the first two terms of the right side of Eq. �47� �It must be noted
from Eq. �33� that �q�I�� and �q�O�� involve the displacement com-
ponents as well as twists. Also, the stiffness matrices �K�IO�� and
�K�NI�� involve slopes.� The second part of the gradient requires
evaluation of the derivative of the load vector, which in turn in-
volves computation of �F /�U and �J /�U, together with the appli-
cation of the chain rule. For these computations, it is useful, in
general, to use the formulas

�Fij

�Uk
=

�Fij

�Xm
Fmk

−1,
�J

�Uk
= J

�Fij

�Uk
Fji

−1,
�F−1

�U
= − F−1 ·

�F

�U
· F−1

�51�
It is noted that, in the present case, the deformation gradient can

be written down as

F = �1 + u,x 0

w,x 1
 �52�

Now, with w,x=, one has

F = �1 + u,x 0

 1
 �53�

Also, J=det�F�=1+u,x.
Finally, the auxiliary equation, Eq. �24�, is viewed as

1

2
A = f�U,B� �54�

and is used within each Newton iteration.

5 Dynamic Analysis of MEMS
The computational procedures for dynamic analysis of MEMS

are considered next. The governing equation for the dynamic re-
sponse of MEMS is

MÜ�t� + KU�t� = F�U�t�,
�t�� �55�

Here, U�t� is the displacement vector, 
�t� is the charge density,
and the dots indicate the time derivatives. M and K are, respec-
tively, the consistent mass matrix and stiffness matrix.
F�U�t� ,
�t�� represents the electrostatic force, which depends on
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the charge distribution 
�t�. Equation �55� can be solved using
several direct integration methods when the forces are linear in
displacement �9�. However, many of these methods are not di-
rectly applicable to MEMS. Two methods applicable to MEMS
analysis are the central difference method and the Newmark
method. Equation �55� is solved for U�t� with the initial condi-
tions

U�0� = 0
�56�

U̇�0� = 0

Now one can define U̇=v and Ü=a and discretize the time period
�0 T� into �t1 , t2 , . . . , tn , tn+1 , . . . , tN� with t1=0 and tN=0. Con-
sider a typical time interval �tn tn+1�. Assume that the solution is
known at time tn, i.e., �Un ,vn ,an� are known, and the unknown
quantities at tn+1 are �Un+1 ,vn+1 ,an+1�. In the present work, the
Newmark method has been employed to update the variables.

5.1 The Newmark Method. The Newmark method �33� is a
widely used time integration scheme for dynamic analysis in finite
element modeling. There are various ways of implementing the
Newmark scheme. The version, which is used in the present work,
is called the a-form �11�. Define predictors:

Ũn+1 = Un + �tvn +
�t2

2
�1 – 2��an

�57�
ṽn+1 = vn + �1 − ���tan

The next step is to use the predictors to obtain the actual quantities

Un+1 = Ũn+1 + ��t2an

�58�
vn+1 = ṽn+1 + ��tan+1

Here � and � are the algorithmic parameters that are fine-tuned
for integration accuracy and numerical stability. For a discussion
on the effect of these parameters on the performance on the algo-
rithm, see Ref. �11�.

To start the process, a0 can be calculated from

Ma0 = − KU�0� + F�U�0�,
�0�� �59�

To march forward in time for acceleration, one needs to solve the
time discrete version of the dynamic equation �55�:

Man+1 + KUn+1 = F�Un+1,
n+1� �60�
This equation set is nonlinear and would be solved using the

Newton scheme.

5.2 Implicit Time Integration. Finally, time integration for
the problem is implemented using the Newmark scheme utilizing
Newton’s scheme. The method follows closely from Belytschko et
al. �34�. Using the version of BEM derived in the current work,
one can recast Eq. �55� as

MÜ�t� + KU�t� = felec�U�t�,B�t�� �61�

Here felec�U�t� ,B�t�� denotes the entire force loading term ob-
tained through BEM analysis of the electrostatic problem.

Now define

R�U,B� = 
RE

RM
� �62�

Here, R is the grand residual for the problem. The Newton itera-
tive scheme is essentially


 �RE

�B

�RE

�U
�RM

�B

�RM

�U

��k�

· 
�B

�U
��k�

= − 
RE

RM
��k�

�63�

U�k+1� = U�k� + �U�k�, B�k+1� = B�k� + �B�k� �64�
Superscripts are used to denote the iteration step and subscripts
for the Newmark integrator. Starting with k=0, Eq. �63� is iterated
until convergence. At convergence, R�k�	R�U�k� ,B�k��→0. This
iteration helps one find the value of an needed at each step of time
integration through an update of Un

�k�. The algorithm for the
coupled scheme is described as:

1. Solve BEM on �B for applied voltage and compute the trac-
tion H0 from Eq. �20�.

2. Set initial values of displacement U0 and velocity v0 to 0
and compute initial acceleration using a0=M−1H0.

3. Set an+1
�0� =an, vn+1

�0� =vn and Un+1
�0� =Un.

4. Estimate Ũn+1 and ṽn+1 from Un and vn using Eq. �57�.
5. Bn+1

�0� =Bn.
6. Set k=1.
7. Newton iteration for time step n+1.

�a� Use Eqs. �41� and �47� to compute the value of requisite
residuals B=Bn+1

�k� and U=Un+1
�k� .

�b� Use Eqs. �43� and �45� to get residual gradient for the

electrical part, where B=Bn+1
�k� and U=Un+1

�k� .
�c� Similarly proceed to compute the other four gradients

from the relevant equations.
�d� Update acceleration as an+1

�k� =1 /��t2�Un+1
�k� − Ũn+1� and

vn+1
�k� = ṽn+1+��tan+1

�k� .

�e� RM
�k�=RM

�k�+Man+1
�k� and �RM /�U ��k�=�RM /�U ��k�

+1 / ���t2�M.
�f� Plug the above residuals into Eq. �63� and solve for the

increments.
�g� Use Eq. �64�, to update the primary variables.

�h� Compute the tolerance, Tol= �Un+1
�k� −Un+1

�k−1�� / �Un+1
�k−1��

�100%.
�i� Update k=k+1.
�j� If tolerance is high, repeat from step �7�.

8. an+1=an+1
�k� , vn+1=vn+1

�k� , Un+1=Un+1
�k� .

9. Bn+1=Bn+1
�k� .

10. n=n+1 and repeat from step �3� until required time limit is
reached.

6 Numerical Verification

6.1 Code Verification. The computer code for the thin beam
Lagrangian BEM has been carefully verified at several stages.

6.1.1 BEM for Region Exterior to a Thin Flat Beam. The
BEM code has been carefully verified by comparing the charge
densities obtained with the values reported by Liu and Shen �35�.
The charge density obtained at the midpoint of the thin beam has
been found to agree within 1% of that reported by Liu and Shen
�35� in the thin beam limit.

6.1.2 FEM for Thin Beam. The FEM formulation for deform-
able von Karman plates, presented earlier in Ref. �26�, has been
carefully verified and the code has also been independently veri-
fied for classical problems like bending deformation of beams and
plates under uniform pressure.

6.1.3 FEM-BEM Coupling. FEM-BEM coupling has been car-
ried out using Newton’s method on the Lagrangian version and
the results are discussed in Sec. 6.2.

6.2 Thin Beam Dynamics

6.2.1 Material Properties. Material properties used for silicon
conductors are �36,37�
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E = 169 GPa, � = 0.22, � = 2231 kg/m3, � = 8.85

� 10−12 F/m �65�

Here, E, �, and � refer to Young’s modulus, Poisson’s ratio, and
the density of silicon, respectively, whereas � is the permittivity of
free space. It is assumed that the anisotropy is negligible and the
beam is made up of polysilicon for this system.

6.2.2 The Problem. Dynamics of a MEMS beam �the silicon is
doped so that it is a conductor�, subjected to both dc and ac biases
�electric field� is simulated using the BEM-FEM coupled ap-
proach described earlier in the paper. Each beam is in clamped-
clamped configuration and two beams are used in order to have a
zero voltage ground plane �plane of symmetry� midway between
them. The MEMS beam is 1000 �m long, 40 �m wide, and
0.5 �m in height. The initial gap �gap0� is 5 �m. The transverse
midpoint deflection is denoted by wmid and the amplitude of vi-
bration of the midpoint of the beam, corresponding to ac excita-
tion frequency �, is denoted by Amp���.

6.2.3 Results. Figure 6 shows the normalized deflection as a
function of voltage for a quasistatic version with dc bias. The

beam suffers instability when the gap reduces by approximately
57% of the initial value. This result agrees very well with the
results obtained using reduced order modeling �38�.

Figure 7 is a plot of normalized deflection as a function of
voltage squared. Since electric force is proportional to the square
of the voltage, the slope of this curve can be used to deduce the
stiffness of the system. The presence of competing electrical and
mechanical nonlinearities and their influence on the stiffness has
been explained in Ref. �27�. The curve obtained here closely
agrees with the results of the quasistatic 3D plate version of the
problem �27�.

The dynamic behavior of the beam under dc bias can be seen in
Fig. 8. The time period in the plot refers to Tp=2� /�Nat, where
�Nat= �4.73�2�EI /�SL4�1/2 from the classical linear beam theory
�39�. For the current beam geometry, Tp�226.75 �s. The fre-
quency of vibration agrees within 1% with this value for a rela-
tively low excitation voltage, which limits the nonlinear effect.

The MEMS beam can also be excited using ac excitation and its
response is also studied. When excited close to the beam’s natural
frequency, the beat phenomenon can be clearly observed from Fig.
9. A more informative picture can be obtained by plotting the
amplitude for various frequencies of the ac excitation. Figure 10
shows the frequency response of the MEMS structure under a
sinusoidal ac loading of constant amplitude and different frequen-
cies. The curve has the characteristic flip-over profile with the
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peak. Since the electric force is proportional to the square of the
applied voltage, the resonance peak occurs near half the natural
frequency, as shown in Fig. 10.

7 Conclusions
Free and forced vibrations of thin MEMS beams caused by

applied dc and ac excitations have been studied in this work. The
BEM �a special version suitable for thin features� is used to model
the exterior electrostatic charge distribution and forces, while the
FEM is used to model moderately large deflections of thin beams.
A fully Lagrangian description is employed for both the electrical
and mechanical equations. Coupling of the BEM and FEM is
carried out by the Newton scheme with time integration carried
out by the Newmark method. Derivatives of the residuals neces-
sary for the Newton method are carefully obtained by analytical
differentiation of the relevant integral and FEM equations. Non-
linearities arise in this problem from the moderately large deflec-
tions of the beams, from the fact that the deformed shape of a
beam affects the electrical forces on it, and the quadratic relation-
ship between the charge density and the corresponding traction.
Damping caused by the presence of fluid exterior to the beams is
included in a companion paper �28� in which a Stokes flow model
is employed for the fluid flow.

The code developed to simulate the coupled electro-mechanical
problem is carefully verified by comparison with other solutions
reported in the literature. The numerical results for the beam vi-
brations both free �under dc bias� and forced by ac excitation are
presented here for selected problems. The approach presented in
this paper can be extended to study vibrations of MEMS with
plates or NEMS with nanowires and nanotubes in a straightfor-
ward manner. A static deformation analysis of plates is presented
in Ref. �27�, while charge distribution on conducting carbon nano-
tubes and semiconducting silicon nanowires have been studied in
recent work �40,41�.
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Fully Lagrangian Modeling of
Dynamics of MEMS With Thin
Beams—Part II: Damped
Vibrations
Micro-electro-mechanical systems (MEMS) often use beam or plate shaped conductors
that are very thin with h /L�O�10�2–10�3� (in terms of the thickness h and length L of
a beam or side of a square plate). A companion paper (Ghosh and Mukherjee, 2009,
“Fully Lagrangian Modeling of Dynamics of MEMS With Thin Beams—Part I: Un-
damped Vibrations,” ASME J. Appl. Mech., 76, p. 051007) addresses the coupled elec-
tromechanical problem of MEMS devices composed of thin beams. A new boundary
element method (BEM) is coupled with the finite element method (FEM) by Ghosh and
Mukherjee, and undamped vibrations are addressed there. The effect of damping due to
the surrounding fluid modeled as Stokes flow is included in the present paper. Here, the
elastic field modeled by the FEM is coupled with the applied electric field and the fluid
field, both modeled by the BEM. As for the electric field, the BEM is adapted to efficiently
handle narrow gaps between thin beams for the Stokes flow problem. The coupling of the
various fields is carried out using a Newton scheme based on a Lagrangian description
of the various domains. Numerical results are presented for damped vibrations of MEMS
beams. �DOI: 10.1115/1.3086786�

Keywords: boundary integral equations, boundary element method, singular integrals,
micro-electro-mechanical systems, damping, Stokes flow, aspect ratio, thin beam, Newton
scheme

1 Introduction
The field of micro-electro-mechanical systems �MEMSs� is a

very broad one that includes fixed or moving microstructures,
encompassing micro-electro-mechanical, microfluidic, micro-
electro-fluidic-mechanical, micro-opto-electro-mechanical, and
micro-thermal-mechanical devices and systems. MEMS usually
consists of released microstructures that are suspended and an-
chored or captured by a hub-cap structure and set into motion by
mechanical, electrical, thermal, acoustical, or photonic energy
source�s�.

Typical MEMS structures consist of arrays of thin plates with
cross sections in the order of microns and lengths in the order of
tens to hundreds of microns. Sometimes, MEMS structural ele-
ments are beams. An example is a small rectangular silicon beam
with length in the order of millimeters and thickness in the order
of microns that deforms when subjected to electric fields. Owing
to its small size, significant forces and/or deformations can be
obtained with the application of low voltages ��10 V�. Examples
of devices that utilize vibrations of such beams are comb drives,
synthetic micro-jets ��1� – for chemical mixing, cooling of elec-
tronic components, micropropulsion, turbulence control, and other
macroflow properties�, microspeakers �2�, etc. Numerical simula-
tion of electrically actuated MEMS devices has been carried out
for approximately a decade by using the boundary element
method �BEM� �see, e.g., Refs. �3–7�� to model the exterior elec-
tric field and the finite element method �FEM� �see, e.g., Refs.
�8–10�� to model deformation of the structure. The commercial
software package MEMCAD �11�, for example, uses the commercial

FEM software package ABAQUS for mechanical analysis, together
with a BEM code FASTCAP �12� for the electric field analysis.
Other examples of such work are Refs. �13–15� as well as Refs.
�1,16� for dynamic analysis of MEMS.

The present paper focuses on the influence of fluidic damping
on the dynamic behavior of MEMS devices made up of very thin
conducting beams. Analysis of the electromechanical problem has
already been carried out in the companion paper �17�. Ye et al.
�18� showed Stokes flow to be adequate for modeling the fluidic
effects in MEMS systems. This model is used in the current paper.
A convenient way to model such a problem is to assume beams
with vanishing thickness and recast the boundary integral equa-
tions �BIEs� in terms of sum of tractions and difference of veloci-
ties between the upper and lower surfaces, respectively �19�. Fur-
ther simplification can be obtained by noting that the difference of
velocities between the upper and lower surfaces, for very thin
beams, is negligible, and the sum of tractions between upper and
lower surfaces is equal to the net traction on the beam.

The BEM developed in Refs. �11,13–16,18� performs the elec-
trical analysis on the deformed configuration �Eulerian approach�.
Therefore, the geometry of the structure must be updated before
an electrical analysis is performed during each relaxation itera-
tion. This procedure increases computational effort and introduces
additional numerical errors since the deformed geometry must be
computed at every stage. Hence, a Lagrangian approach, which
obviates the need to carry out calculations based on the deformed
shapes of a structure �20�, has been used in the current work. The
fluid equations are then coupled with the electric and mechanical
equations developed in Ref. �17� to form a total Lagrangian ver-
sion of the entire problem. Finally, a Newton scheme developed
analogous to Ref. �21� is used to solve the entire coupled nonlin-
ear problem.

This paper starts with modeling the fluid. The fluid is assumed
to be Stokes. A conventional BIE representing the fluid is first
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presented and a thin beam approximation follows. The equations
are then reformulated in a total Lagrangian framework. Weak fluid
compressibility to reduce high stresses generated in very small
gaps is discussed next. This paper then proceeds to explain the
Newton scheme for coupling the fluid domain with the electrical
and mechanical domains. Numerical results are then presented
and discussed. This paper concludes with a section on discussions
of the results and scope for future research.

2 Damping Problem in a Stokes Fluid
An extensive literature exists on the subject of damping forces

in MEMS. The key issue, of course, is the choice of a particular
mathematical model in order to calculate the damping forces cor-
rectly. Various options exist, such as a squeeze film model �e.g.,
Ref. �22��, an incompressible steady Stokes flow model �e.g., Ref.
�23��, an incompressible oscillatory Stokes flow model �e.g., Refs.
�18,24��, inclusion �24� or exclusion of slip at the solid/fluid in-
terface, and molecular dynamics �MD� simulation �e.g., Ref.
�25��. The last option must be employed if continuum theory
breaks down, as often happens at the nanoscale or due to extreme
rarefaction of the surrounding air at very low pressures. Some-
times, even if continuum theory does apply, a quasisteady Stokes
model may not be due to very high resonant frequencies �around
100 MHz �26��.

MEMS plates and beams, however, are typically tens to hun-
dreds of micrometers long and with thickness in the order of mi-
crometers �27�. There exists a regime where due to the
micrometer-scales involved, the Reynolds numbers of the sur-
rounding flow are generally small enough, and natural frequencies
are low enough �in the range of 100 s of kilohertz� to allow the
use of a steady-state Stokes flow �sometimes called creeping flow�
model. Moreover, if the MEMS operate at pressures where the air
can be treated as a continuum, the usual operating frequencies
very often require an incompressible fluid model �23�. Further, in
synthetic microjet applications, the medium surrounding the beam
is typically a liquid for which an incompressible model is, of
course, the appropriate one. Problems in which an incompressible
steady-state Stokes model applies are of interest in this work. It is
important to point out that numerical and experimental study of
typical MEMS structures �18� demonstrates that a 3D, incom-
pressible, no slip, oscillatory Stokes model can predict measured
quality factors within 10%. Although only the steady Stokes
model is employed in the present work, it is important to note that
the forms of the integral equations used here remain unchanged
for the oscillatory case, provided that the appropriate kernels for
oscillatory flow are used in these integral equations �18,24�.

2.1 Governing Equations. As discussed above, the Reynolds
numbers of the surrounding flow are generally small enough to
allow for the use of a steady-state Stokes flow �sometimes called
creeping flow� model. The governing equations for the Stokes
flow are as follows:

�p�x� − ��2v�x� = 0, x � B �1�

� · v�x� = 0, x � B �2�

v�x� = g�x�, x � �B �3�

In the above, v is the velocity, p is the pressure, and � is the
dynamic viscosity of the fluid. Also, B is the region exterior to the
structure and �B is its boundary. The stress tensor � inside the
fluid and the fluid surface traction � on the solid surface are de-
fined by equations

��x� = − p�x�I + ���v�x� + �Tv�x��, x � B �4�

��x� = ��x� · n�x�, x � �B �5�

where n is the unit outward normal to the fluid domain at a point
on its boundary.

2.2 Interface Conditions. In addition to the governing equa-
tions, interface conditions on the velocity v and traction � are
required to simulate the coupled dynamics of MEMS devices. The
interface conditions for the fluid-solid interface can be written as

v f = vs

�6�
�e − � f = �s

where superscripts f and s denote the fluid and solid sides of the
interface, respectively, �s is the total traction on the solid side, and
�e and � f are the electric and fluid parts of the traction.

2.3 Stokes Flow: Standard BIE Formulation. The general
BIE formulation of the governing differential equations of Sec.
2.2 can be written as �28�

vi�x� = gi�x� =�=
�B

Tij�x,y�v j�y�ds�y�

+�
�B

Gij�x,y�� j�y�ds�y�, x � �B �7�

where the Green’s function G is

Gij�x,y� =
1

4��
�− �ij ln r + r,ir,j� �8�

and the traction kernel is

Tij�x,y� = Tijk�x,y�nk�y� �9�
with

Tijk�x,y� =
1

�r
r,ir,jr,k �10�

In the above, x is a source point, y is a field point, r is the
Euclidean distance between the source and field points, r,i
=�r /�yi= �yi−xi� /r, and �ij are the components of the Kronecker
delta. Also, the symbol �= denotes the finite part of the integral in
the sense of Mukherjee �29,30�.

2.4 BIE in Stokes Flow in Infinite Region Around Very
Thin Beams. Analogous to the BIE for the electrostatic problem
�31,32�, consider the flow in a region outside of, in this case, a
single thin beam. �One beam is considered for simplicity of
explanation—flow around many beams can also be easily mod-
eled.� It has been shown by Mukherjee et al. �19� that for a thin
beam, with x+�s+ �see Fig. 1�,

vi�x+� = gi�x+� =�=
s+

Tij�x+,y�wj�y�ds�y�

+�
s+

Gij�x+,y�qj�y�ds�y�, x+ � s+ �11�

where qj =� j
++� j

−, wj =v j
+−v j

−, and s+=s1
+�s2
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Fig. 1 Two parallel beams in a surrounding Stokes fluid
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For a thin beam v j
+�v j

−, causing the first integral on the right
hand side to disappear in Eq. �11�. The above equation then sim-
plifies to

vi�x+� = gi�x+� =�
s+

Gij�x+,y�qj�y�ds�y�, x+ � s+ �12�

It has been shown by Mukherjee et al. �19� that the null space of
the kernel G in Eq. �12� is empty and this equation has a unique
solution for any prescribed velocity g�x� on �B=s+�s−. Thus Eq.
�12� has the double advantage of avoiding ill behaved matrices
resulting from thin structures and gaps as well as singularities
present in G in Eq. �7� �19,28�.

2.5 Lagrangian Version of the Stokes BIE. Using the same
line of reasoning as for the electrical problem �17�, one can derive
the Lagrangian formulation of the Stokes flow BIE:

Vi�X+� =�
S+

1

4��
�− �ij ln R�X+,Y�

+
R�X+,Y�iR�X+,Y� j

R�X+,Y�2 	H̄j
flu�Y�dS�Y�, X+ � S+

�13�

Here R=R�X+ ,Y�, Vi�X+�, and H̄j
flu�Y� are, respectively, the La-

grangian description of the position, velocity, and the resultant
fluidic surface traction. Please note that the resultant fluidic sur-
face traction acting on the beam is Hflu=−Hflu.

3 Compressible Stokes Flow
In view of the fact that real fluids are at least somewhat com-

pressible �especially some gases�, inclusion of compressibility in
the Stokes flow model is investigated in this section. �A similar
model is used in Ref. �33� for a different reason.� It is noted that
inclusion of a small amount of compressibility in the model can
help in convergence of the solutions by avoiding high stresses
generated when the gap between two beams is very small �gap
�O�0.005L��.

It is first noted that the constitutive model for Stokes flow �Eq.
�4�� is analogous to that for incompressible linear elasticity. This
equation is now replaced by one analogous to that for compress-
ible elasticity, i.e.,

��x� = ��� · v�I + ���v�x� + �Tv�x��, x � B �14�

where

� =
2��

1 − 2�
�15�

in terms of dynamic viscosity � and a new material constant �,
which is analogous to Poisson’s ratio for linear elasticity. Also, K,
analogous to bulk modulus, is

K =
2��1 + ��
3�1 − 2��

�16�

and this is a measure of the compressibility of the fluid. It is well
known that at the incompressibility limit �→ 1

2 and both � and
K→	.

Please note that Eq. �14� is identical to Eq. �1� in Ref. �33�
where it is written in a different way by adding and subtracting the
pressure term to the right hand side of Eq. �14�.

The previous BIE formulation �Eq. �12�� remains the same ex-
cept that instead of �Eq. �8�� one has

Gij�x,y� =
1

8��1 − ���
�− �3 − 4��ln�r��ij + r,ir,j� �17�

One can note that Eq. �17� reduces to Eq. �8� when �→ 1
2 .

4 Newton’s Scheme for Solving the Coupled Problem
Newton’s method is an iterative root-finding algorithm that uses

the first few terms of the Taylor series of a function f :R→R in
the vicinity of a suspected root. The algorithm can be written for
a one dimensional case as

xn+1 = xn −
f�xn�
f��xn�

, n 
 0

For the multivariate case, f :Rp→Rp,

x � Rp:f�x� = 0 � Rp

�18�
xn+1 = xn − Jf�xn�−1f�xn�, n 
 0

where Jf�x� denotes the Jacobian of the function f�x�. It is
straightforward to recast Eq. �18� in the context of the current
problem by replacing the vector function f�x� by the relevant vec-
tor function for the present problem.

4.1 Coupled MEMS System. The system of interest in the
present paper is a thin MEMS beam electrically actuated and vi-
brating in a fluid medium. The electromechanics of a typical sys-
tem has been analyzed in Ref. �17�, and the introduction of fluidic
effects in this paper completes the full analysis of such a system.
Figure 2 shows �as an example of such a MEMS device� a de-
formable, clamped beam over a fixed ground plane. The unde-
formed configuration is B with boundary �B. The beam deforms
when a potential V is applied between the two conductors, and the
deformed configuration is called b with boundary �b. The charge
redistributes on the surface of the deformed beam, thereby chang-
ing the electrical force on it and this causes the beam to deform
further. As the deformation starts, the damping effects due to flu-
ids come into play. The system then undergoes vibrations, and the
complete analysis of the system is carried out using the Newton
scheme. The coupling of the mechanical and fluid equations in-
volves continuity of velocity and equilibrium of traction. The fluid
traction at the interface contributes as an additional external fluid
force on the beam �see Eq. �6��.

--------------------------

v

++ ++ ++ ++ ++ ++ ++
++ ++ ++++ ++ ++

Electrostatic Force

v
++ ++ ++ ++++ ++++ ++

--------------------------
Electrostatic Force

∂ B

b
b

B

∂Fluid

Fluid

Fluid

Fluid

Fig. 2 Deformable clamped beam over a fixed ground plate
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4.2 Residuals and Their Gradients. The Newton scheme is
used to solve equations for the entire system of the coupled
electro-mechanical-fluid problem together. The relevant vector
functions used in the present case are called residuals, which can
be formed using the relevant governing equations, as shown in the
companion paper �17�. For the sake of brevity the electrical, me-
chanical, and fluidic variables are denoted as E, M, and F respec-
tively. Hence, the residuals are denoted, respectively, as RE, RM,
and RF. The gradient notation follows as �RE /�B=REE, �RE /�U
=REM, �RE /�Hflu=REF, and so on.

4.2.1 The Electrical Residual and Its Derivatives. One can
recall from Ref. �17� that

RE�U,B� = ��X+� +�
S1

+−Ŝ1
+

ln R�X+,Y�B�Y�
2��

dS�Y�

+�
Ŝ1

+

ln R�X+,Y�B�Y�
2��

dS�Y�

+�
S2

+

ln R�X+,Y�B�Y�
2��

dS�Y� �19�

where B is the sum of charges of the upper and lower surfaces of
a thin beam, � is the permittivity of the medium, and � is the
electric potential �voltage� on the surface. From the physics of the
problem, it is clear that there is no direct influence of fluidic
variables on the electric field and hence one can at once deduce
that REE and REM remain the same as in Ref. �17� and

REF =
�RE

�Hflu = �0� �20�

4.2.2 The Mechanical Residuals and Their Gradients. The
mechanical residual can be formed along the lines of Ref. �17�
except that the force due to the fluid is added to the forcing term.
One can recall from Ref. �17� that the mechanical residual can be
written as

RM�U,B,Hflu� = 
M�I� 0

0 M�0� � · 
 q̈�I��t�
q̈�O��t�

�
+ 
K�I� 0

0 K�0� � · 
 q�I��t�
q�O��t� �

+ 
 0 KIO

2K�IO�T K�NI� � · 
 q�I��t�
q�O��t� � − �P� �21�

The last term of the above equation is the load term and contains
electrical and fluidic forces:

�P� = �P�elec + �P�flu =�
0

L �N�I� 0

0 N�O� 	T� H̄x
elec

H̄y
elec

M̄x
elec


−�
0

L �N�I� 0

0 N�O� 	T� H̄x
flu

H̄y
flu

M̄x
flu
 �22�

where “elec” and “flu” superscripts denote, respectively, the elec-
trical and fluidic components of tractions and forces.

It can be deduced that RME remains the same as in Ref. �17�.
RMM also remains the same assuming that Hflu does not depend on
U. The remaining gradient RMF would entail the computation of
�RM /�Hflu=−��P� /�Hflu. The load has two parts, electrostatic and
the fluidic. The fluidic part alone contributes to the gradient. One
can note using a suitable finite element interpolation

Pflu�x� = bL�N�x���Hflu� �23�

where b and L are beam depth and length, Pflu is the fluid force,
�N�x�� is a suitable interpolation matrix, and �Hflu� is the nodal
fluid traction. Using Eq. �23�, one can compute RMF:

RMF = �RM/�Hflu = − ��P�/�Hflu = − �Pflu/�Hflu = − bL�N�x��I

�24�

4.2.3 The Fluidic Residuals and Their Gradients. The fluidic
residual can be written as

RFi�U,Hflu� = Vi�X+� +�
S+

1

4��
�− �ij ln R�X+,Y�

+
R�X+,Y�iR�X+,Y� j

R�X+,Y�2 	Hj
flu�Y�dS�Y�, X+ � S+

�25�

where the index i denotes the component of the residual �axial or
transverse�. The above equation confirms the lack of coupling
between the fluid and electric fields and hence RFE=0. Computing
RFF requires the computation of the gradient of Eq. �25� with
respect to Hk

flu:

�RFi

�Hj
flu�X+� =�

S+

1

4��
�− �ij ln R�X+,Y�

+
R�X+,Y�iR�X+,Y� j

R�X+,Y�2 	dS�Y� �26�

Finally, finding the residual with respect to the mechanical do-
main, RFM needs computing gradient with respect to the displace-
ment U variable. One can rewrite Eq. �25� as

RFi�U,Hflu� = Vi�X+� +�
S+

1

4��
Kij�X+,Y�Hj

flu�Y�dS�Y�

�27�

where

Kij�X+,Y� = − �ij ln R�X+,Y� +
R�X+,Y�iR�X+,Y� j

R�X+,Y�2 �28�

Now one can write

�Kij�X+,Y�
�Uk�X+�

= Dijk�X+,Y� �29�

where

Dijk =
�ijRk

R2 −
�ikRj

R2 −
� jkRi

R2 + 2
RiRjRk

R4 �30�

Following the derivation of Eq. �46� in Ref. �17�,

�RFi�U,Hflu�
�Uk�X+�

=�
S1

+−Ŝ1
+

1

4��
Dijk�X+,Y�Hj

flu�Y�dS�Y�

+�
S2

+

1

4��
Dijk�X+,Y�Hj

flu�Y�dS�Y�

+�
Ŝ1

+

1

4��
Dijk�X+,Y��Hj

flu�Y� − Hj
flu�X��dS�Y�

�31�
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5 Dynamic Analysis of MEMS
We are now in a position to consider the computational proce-

dures for dynamic analysis of MEMS. The governing equation for
the dynamic response of the MEMS system is

MÜ�t� + KU�t� = Felec�B�t�,U�t�� + Fflu�Hflu�U̇�t��� �32�

Here, U is the displacement vector and dots indicate time deriva-
tives. M and K are, respectively, the consistent mass matrix and
stiffness matrix. Felec�B�t�� represents the electrostatic force,
which depends on the charge distribution B�t�, and Fflu represents
the fluidic force vector, which depends on the traction distribution

Hflu=Hflu�U̇�, where U̇ is the velocity vector. Equation �32� can
be solved using several direct integration methods when the forces
are linear in displacement �8�. However, many of these methods
are not directly applicable to MEMS. Two methods applicable to
MEMS analysis are the central difference method and the New-
mark method. Equation �32� is solved for U�t� with the initial
conditions

U�0� = 0
�33�

U̇�0� = 0

Now one can define U̇=v and Ü=a and discretize the time period
�0 T� into �t1 , t2 , . . . , tn , tn+1 , . . . , tN� with t1=0 and tN=T. Con-
sider a typical time interval �tn tn+1�. Assuming that the solution is
known at time tn, i.e., �Un ,vn ,an� are known, the unknown quan-
tities at tn+1 are �Un+1 ,vn+1 ,an+1�. In the present work, the New-
mark method has been employed to update the variables.

5.1 The Newmark Method. The Newmark method �34� is a
widely used time integration scheme for dynamic analysis in finite
element modeling. There are various ways of implementing the
Newmark scheme, one which is used in the present work is called
the a-form �10�. Define predictors

Ũn+1 = Un + tvn +
t2

2
�1 − 2��an

�34�
ṽn+1 = vn + �1 − ��tan

The next step is to use the predictors to obtain the actual quantities

Un+1 = Ũn+1 + �t2an

�35�
vn+1 = ṽn+1 + �tan+1

Here � and � are algorithmic parameters that are fine tuned for
integration accuracy and numerical stability. For a discussion on
the effect of these parameters on the performance on the algo-
rithm, see Ref. �10�.

To start the process, a0 can be calculated from

Mä�0� = − KU�0� + Felec�B�0�,U�0�� + Fflu�Hflu�0�� �36�

To march forward in time for acceleration, one needs to solve the
time discrete version of the dynamic equation �32�,

Man+1 + KUn+1 = Felec�Bn+1,Un+1� + Fflu�Hn+1
flu � �37�

This equation set is nonlinear and is solved using the Newton
scheme.

5.2 Implicit Time Integration. Finally, time integration for
the problem is implemented using the Newmark scheme utilizing
Newton’s scheme. The method follows closely from Belytschko et
al. �35�.

Write Eq. �32� as

MÜ�t� + KU�t� = f�B�t�,U�t�,Hflu�t�� �38�

Here f�B�t� ,U�t� ,Hflu�t�� denotes the entire force loading term
obtained through BEM analysis. One can define

R�U,B,Hflu� = �RE

RM

RF
 �39�

Here, R is the grand residual for the problem. The Newton itera-
tive scheme is essentially

�REB REM REF

RME RMM RMF

RFE RFM RFF


�k�

· � B

U

Hflu
�k�

= − �RE

RM

RF


�k�

�40�

U�k+1� = U�k� + U�k�, B�k+1� = B�k� + B�k�, Hflu�k+1� = Hflu�k�

+ Hflu�k� �41�
Superscripts denote a Newton iteration step and subscripts a New-
mark integrator step. Starting with k=0, Eq. �40� is iterated until
convergence. At convergence, R�k��R�U�k� ,B�k� ,V�k��→0. This
iteration helps one to find the value of an needed at each step of
time integration through an update of Un

�k�. The algorithm for the
coupled scheme is described below.

1. Solve BEM on �B for applied voltage and compute the trac-
tion H0 from Ref. �17�.

2. Set initial values of displacement U0 and velocity v0 to 0
and compute initial acceleration using a0=M−1H0.

3. Set an+1
�0� =an, vn+1

�0� =vn, and Un+1
�0� =Un.

4. Estimate Ũn+1 and ṽn+1 from Un and vn using Eq. �34�.
5. Bn+1

�0� =Bn and Hn+1
flu�0�=Hn

flu.
6. Set k=1.
7. Newton iteration for time step n+1:

�a� Use Eqs. �19�, �21�, and �25� to compute the value of
requisite residuals. B=Bn+1

�k� , U=Un+1
�k� , and Hflu

=Hn+1
flu�k�.

�b� Use Ref. �17� and Eq. �20� to get residual gradient for
the electrical part, where B=Bn+1

�k� , U=Un+1
�k� , and Hflu

=Hn+1
flu�k�.

�c� Similarly proceed to compute the other six gradients
from the relevant equations.

�d� Update acceleration as an+1
�k� =1 /�t2�Un+1

�k� − Ũn+1� and
vn+1

�k� = ṽn+1+�tan+1
�k� .

�e� RM
�k�=RM

�k�+Man+1
�k� and �RM /�U��k�=�RM /�U��k�

+1 / ��t2�M.
�f� Plug the above residuals to Eq. �40� and solve for the

increments.
�g� Use Eq. �40� to compute the increments.
�h� Use Eq. �41� to update the primary variables.
�i� Compute the tolerance, tol= ��Un+1

�k� −Un+1
�k−1��� / �Un+1

�k−1��
�100%.

�j� Update k=k+1.
�k� If tolerance is high, repeat from step �7�.

8. an+1=an+1
�k� , vn+1=vn+1

�k� , and Un+1=Un+1
�k� .

9. Bn+1=Bn+1
�k� and Hn+1

flu =Hn+1
flu�k�.

10. n=n+1 and repeat from step �3� until required time limit is
reached.

6 Numerical Verification

6.1 Code Verification. The computer code with thin beam
Lagrangian Stokes BEM has been carefully verified at several
stages. The beam dimensions have been taken to be 1000�40
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�0.5 �m3 and the dynamic viscosity is assumed to be 1
�10−5 Pa s for the numerical results. The incompressible Stokes
equations are employed in Secs. 6.1.1 and 6.1.2.

6.1.1 Plane Couette Flow. Couette flow refers to the flow be-
tween two parallel plates, one of which is moving with respect to
the other. The analytical solution for this kind of flow is known. If
the bottom plate is fixed and the top plate is moving with speed v0
at a distance D from the latter and the fluid has dynamic viscosity
�, then the horizontal traction � on the top surface can be written
as

� = �
v0

D
�42�

It must be noted that the value of the traction at the bottom surface
would be equal and opposite to the above.

For numerical verification the gap D between the plates has
been taken to be 10 �m and the velocity of the top plate is 1 m/s.
The analytical value of the horizontal traction in this case would
be �from Eq. �42�� 1 Pa. The numerical results are shown in Fig.
3 and agree to within 3% of the analytical result.

6.1.2 Vertically Moving Plate. When the plates are moving
vertically toward each other, to the best of the author’s knowl-
edge, there is no closed form solution. However, certain infer-
ences can be drawn for this kind of flow.

For numerical verification, the initial gap D between the plates
has been taken to be 10 �m and the velocity of the top plate is 1
m/s downward and that of the bottom plate is 1 m/s upward.
Figure 4 shows the vertical traction generated by such motion. It
can be deduced from the physics that the vertical traction would
be equal and opposite on the two plates and will have maximum
value at the center and decrease toward the sides as the fluid
escapes. This trend can be clearly observed in the plot. Figure 5
shows a plot of the horizontal traction for this motion. One can
deduce that as the plates move toward each other, they displace
fluid from the central part of the plates to the periphery in opposite
directions. Hence the horizontal traction should be antisymmetric
with respect to the centerline on either side of the top plate. The
exact same effect would be visible for the bottom plate via sym-
metry of the problem. This effect is clearly observed in the plot of
horizontal traction.

6.1.3 Compressibility and Convergence. When the initial gap
between the plates is reduced to O�0.005L� unrealistically large
stresses result and convergence takes disproportionately larger
time. The effect of incompressibility on convergence can be

clearly seen in the plot presented here for such small gaps �see
Fig. 6�. The computing requirement increases very sharply as one
approaches the incompressibility limit of �→ 1

2 .
It is noted, however, that the values of � for air and water are

approximately 0.499999999999 and 0.49999999999999, respec-
tively, at room temperature. Hence, �= 1

2 should be used for prac-
tical calculations involving these fluids.

6.2 Thin Beam Dynamics

6.2.1 Material Properties. Material properties used for silicon
conductors are �36,37� as follows:

E = 169 GPa, �s = 0.22, � = 2231 kg/m3 �43�
whereas properties of the surrounding medium are as follows:

� = 8.85 � 10−12 F/m, � = 1.0 � 10−5 Pa s
�44�

� f = 0.50 �except for Figs. 6 and 8�

Here, E, �s, and � refer to Young’s modulus, Poisson’s ratio,
and density of silicon, respectively, whereas �, �, and � f are the
permittivity of free space, dynamic viscosity, and Poisson param-
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eter of air, respectively. It is assumed that the anisotropy is negli-
gible, and the beam is made up of polysilicon for this system.

6.2.2 The Problem. Dynamics of a MEMS beam �the silicon is
doped so that it is a conductor�, subjected to both dc and ac biases
�electric field� inside a fluid medium, is simulated using a BEM-
FEM coupled approach described earlier in this paper. Each beam
is clamped-clamped configuration, and two beams are used in
order to have a zero voltage and velocity at the ground plane
�plane of symmetry� midway between them �see Fig. 1�. The
MEMS beam is 1000 �m long, 40 �m wide, and 0.5 �m tall.
The initial gap �gap0� is 5 �m. The transverse midpoint deflec-
tion is denoted by wmid.

6.2.3 Results. The dynamic behavior of the beam under a dc
bias of 0.5 V can be seen in Fig. 7. The time period in the plot
refers to Tp=2� /�Nat, where �Nat= �4.73�2�EI /�SL4�1/2 from the
classical linear beam theory �38�. For the current beam geometry,
Tp�226.75 �s.

It should be noted that incompressible Stokes flow in the cur-
rent configuration causes overdamped motion, as shown in Fig. 7.
The equilibrium position of the beam in Fig. 7 agrees to within
1% of the quasistatic value obtained in Ref. �17�.

The effect of compressibility of the fluid medium is indicated in
Fig. 8. It is clear that damping resistance offered by the fluid
greatly increases as the Poisson parameter �→ 1

2 �incompressible
limit�.

Figure 9 shows the response of the beam under an ac bias of
0.5 cos�0.5�Natt�. As the forcing is proportional to the square of
the voltage, the response frequency is twice the applied frequency.

Figure 10 shows the response of the beam under a combined ac
and dc bias. The dc component of the bias is 0.5 V and the ac
component is 0.05 cos�0.5�Natt�. The beam vibrates about the
quasistatic value corresponding approximately to the dc bias and
with a frequency almost equal to 0.5�Nat. This is expected since

Felec�t� � Vapp
2 = �0.5 + 0.05 cos�0.5�Natt��2 = 0.25

+ 0.05 cos�0.5�Natt� + 0.0025 cos2�0.5�Natt� = 0.2513

+ 0.05 cos�0.5�Natt� + 0.0013 cos��Natt� �45�

From Eq. �45�, the dominant ac term has frequency 0.5�Nat, and
the oscillations occur about the quasistatic response of
0.2513 V�0.25 V �see Figs. 7 and 10�.

7 Conclusions
Damped free and forced vibrations of thin MEMS beams sur-

rounded by a fluid medium caused by applied dc and ac excita-
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tions have been studied in this work. The BEM �a special version
suitable for thin features� is used to model the exterior electric
field as well as the fluid fields assuming Stokes flow. A fully
Lagrangian version of the fluid flow equations is employed and
integrated with the Lagrangian versions of the electrical and me-
chanical equations developed in the companion paper �17�. The
fluidic domain is coupled with the mechanical domain through
continuity of velocity and equilibrium of traction, and the entire
Lagrangian coupled problem is solved using a Newton scheme
with time integration carried out by the Newmark method. The
derivatives of the residuals necessary for the Newton method
�which now incorporate the fluid variables as well� are carefully
obtained by analytic differentiation of the relevant integral and
FEM equations.

An a posteriori check confirms that the typical Reynolds num-
ber for the examples given in this paper is O�10−3�. This justifies
the Stokes flow model employed here.

The code developed to simulate the coupled electro-
mechanical-fluidic problem is carefully verified by comparison
with other solutions reported in the literature. Numerical results
for the beam vibrations both free �under dc bias� and forced by ac
excitation are presented here for selected problems. The approach
presented in this paper can be extended to study vibrations of
MEMS with plates or nano-electro-mechanical-systems �NEMS�
with nanowires and nanotubes in a straightforward manner.

It is noted that the method developed here can be extended to
handle more detailed numerical calculations needed for complex
configurations like variable thickness beams and plates with holes,
etc., as compared with analytical or semi-analytical methods,
which are usually restricted to problems with simple geometry. �A
static deformation analysis of plates without a surrounding fluid
has been presented in Ref. �39�.�

A genuine numerical difficulty is encountered �requiring very
small time steps and tighter tolerances for the Newton iteration�
when the surrounding fluid is incompressible Stokes and the ini-
tial gap between the two beams is very small. A similar observa-
tion has also been made in Ref. �23�. Unfortunately, the common
fluids such as air and water are very nearly incompressible with
� f �0.5. It has also been found that the most important residual
gradients needed for successful Newton’s iteration are the ones
with respect to their own domain variables, i.e., REE, RMM, and
RFF.
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Dynamic Fracture of Shells
Subjected to Impulsive Loads
A finite element method for the simulation of dynamic cracks in thin shells and its
applications to quasibrittle fracture problem are presented. Discontinuities in the trans-
lational and angular velocity fields are introduced to model cracks by the extended finite
element method. The proposed method is implemented for the Belytschko–Lin–Tsay shell
element, which has high computational efficiency because of its use of a one-point inte-
gration scheme. Comparisons with elastoplastic crack propagation experiments involving
quasibrittle fracture show that the method is able to reproduce experimental fracture
patterns quite well. �DOI: 10.1115/1.3129711�

1 Introduction

Simulation of fracture of shell structures is engendering consid-
erable interest in the industrial and defense communities. Many
components where fracture is of concern, such as windshields,
ship hulls, fuel tanks, and car bodies, are not amenable to three
dimensional solid modeling, for the expense would be enormous.
Furthermore, fracture is often an important criterion in determin-
ing their performance envelopes.

Here, we describe a finite element method based on the ex-
tended finite element method �XFEM� �1,2� for modeling shell
structures in explicit finite element programs and illustrate their
performance in nonlinear problems involving dynamic fracture.
The methodology is based on the Hansbo and Hansbo �3� ap-
proach, which has previously been applied by Mergheim et al. �4�,
Song et al. �5�, and Areias et al. �6,7�. The equivalence of the
Hansbo and Hansbo �3� basis functions to XFEM �1,2� is shown
in Ref. �8�. The method employs an elementwise progression of
the crack, i.e., the crack tip is always on an element edge. The
elementwise crack propagation scheme may cause some noise
during the crack propagation with coarse meshes. However, in
Ref. �5�, it is shown that such noise diminishes with mesh refine-
ments and the crack propagation speeds converge to the progres-
sive crack propagation results �9�. Réthoré et al. �10� reported that
this is usually adequate for dynamic crack propagation. We do not
use any near-tip enrichment, although Elguedj et al. �11� achieved
good success with near-tip enrichments for static problems.

The literature in dynamic crack propagation in shells is quite
limited. Cirak et al. �12� developed an interelement crack method,
where the crack is limited to propagation along the element edges.
The method is based on the Kirchhoff shell theory. Penalty func-
tions were used to enforce continuity on all interelement edges.
Areias and Belytschko �13� and Areias et al. �6,7� developed a
method for shell fracture based on the extended finite element
method for static and implicit time integrations.

The formulation described here also employs a cohesive law,
but it requires a fracture criterion. As pointed out by Belytschko et
al. �9�, in models that inject a discontinuity in finite elements and
in the governing partial differential equations, this appears to be a
necessity, for a cohesive law is not sufficient to determine a di-
rection or a speed of crack propagation. In the interelement crack
methods, such as Cirak et al. �12�, a fracture criterion is avoided
by injecting cohesive laws either from the beginning of the simu-

lation or in the vicinity of the crack tip �14�. In related work,
Armero and Ehrlich �15� used embedded discontinuity elements to
model hinge lines in plates.

The development of a fracture criterion that is computationally
efficient and is easily applied in terms of available data poses a
significant difficulty. Fracture criteria for quasibrittle materials,
such as aluminum, are usually expressed in terms of the critical
maximum principal tensile strain. However, in low order finite
element models solved by explicit time integration, the maximum
principal tensile strain tends to be quite noisy, so that crack paths
computed by direct application of such a criterion tend to be er-
ratic and do not conform to experimentally observed crack paths.

Here, we propose a nonlocal form of a strain-based fracture
criterion. The nonlocal form is obtained by a kernel-weighted av-
erage over a sector in front of the crack tip. In addition, we de-
scribe a combination of this kernel-weighted average with an an-
gular component that can be used to indicate crack branching.

The methodology is applied to the fracture of shell experiments
performed by Chao and Shepherd �16�. Although these experi-
ments are very interesting, they do not provide enough experimen-
tal data for a validation of the methodology. Nevertheless, we
show that the method is able to reproduce the change in failure
mode that occurs for longer notches as compared with shorter
notches and that the overall final configuration agrees reasonably
well with that observed in the experiments.

2 Shell Formulation With Fracture
The discontinuous shell formulation is based on the degener-

ated shell concept �17–19�, which is almost equivalent to the
Mindlin–Reissner formulation when the edges connecting the top
and bottom surfaces are normal to the midsurface. We will use a
kinematic theory based on the corotational rate-of-deformation
and corotational Cauchy stress rate. These features are briefly
summarized in Sec. 3, but are well known, so we will focus on the
modifications needed for the XFEM treatment of fracture.

The velocity field is given by

v��,t� = vmid��,t� − �e3 � �mid��,t� �1�

where vmid�R3 are the velocities of the shell midsurface, �mid

�R3 are angular velocities of the normals to the midsurface, �
varies linearly from −h /2 to h /2 along the thickness, and �
= ��1 ,�2� are material coordinates of the manifold that describes
the midsurface of the shell; at any point of the shell, we construct
tangent unit vectors e1 and e2 so that

e3 = e1 � e2 �2�
The nomenclature is illustrated in Fig. 1.

For the further development of the discontinuous shell formu-
lation, we will limit ourselves to cracks with surfaces normal to
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the shell midsurfaces as shown in Fig. 2. Although this is not an
intrinsic limitation of the method, it simplifies several aspects of
the formulation.

The discontinuous velocity fields due to a crack in any
Mindlin–Reissner theory can be described by

vmid��,t� = vcont��,t� + H�f����vdisc��,t� �3�

�mid��,t� = �cont��,t� + H�f�����disc��,t� �4�

where f���=0 gives the intersection of the crack surface with the
midsurface of the shell and H� · � is the Heaviside function given
by

H�x� = �1, x � 0

0, x � 0
� �5�

In the above, vcont and vdisc are continuous functions that are used
to model the continuous and the discontinuous parts of the veloc-
ity fields, respectively; similarly, �cont and �disc are continuous
functions. The discontinuities that model the cracks arise from the
step function that precedes vdisc and �disc. It can be seen from Eqs.
�3� and �4� with Eq. �1� that these velocity fields can result in a
loss of compatibility and, in particular, material overlaps in the
displacements, as indicated in Fig. 3, when there are significant
discontinuities in the angular motion but the crack opening is
small. We will deal this incompatibility with a penalty component
in the cohesive law; see Sec. 4.

3 Element Formulation
The shell element used here is a four-node shell element origi-

nally described in Ref. �20� with improvements in Refs. �5,21�.
The shell element employs a one-point quadrature rule with sta-
bilization �22,23� for computational efficiency.

When the velocity fields given in Eqs. �3� and �4� are special-
ized to shell finite elements, the continuous part of the corota-
tional velocity components is given by

v̂x��,t� = NI���v̂xI�t� + �NI����̂yI�t� �6�

v̂y��,t� = NI���v̂xI�t� − �NI����̂xI�t� �7�

where NI are the conventional four-node finite element bilinear
shape functions and the repeated subscripts I denote summation
over all nodes. The corotational components of the rate-of-
deformation tensor are given by

D̂ij =
1

2
� � v̂i

� x̂j

+
� v̂ j

� x̂i
� �8�

Substituting Eqs. �6� and �7� into Eq. �8� yields an expression for
the rate-of-deformation components

D̂x = bx̂Iv̂x̂I + ��bx̂I
c vx̂I + bx̂I�yI� �9�

D̂y = bŷIv̂ŷI + ��bŷI
c vŷI − bŷI�xI� �10�

2D̂xy = bx̂Iv̂x̂I + bŷIv̂ŷI + ��bx̂I
c vx̂I + bŷI

c vŷI + bx̂I�yI − bŷI�xI�

�11�

where

�bx̂I

bŷI
� =

1

2A
	ŷ24 ŷ31 ŷ42 ŷ13

x̂42 x̂13 x̂24 x̂31

 �12�

�bx̂I
c

bŷI
c � =

2�̂KẑK

A2 	x̂13 x̂42 x̂31 x̂24

ŷ13 ŷ42 ŷ31 ŷ24

 �13�

along with x̂IJ= x̂I− x̂J, A is the area of the element, and �̂K is a
projection operator: See Ref. �22�. A state of plane stress is as-
sumed. In Ref. �21�, two methods are proposed for the evaluation
of bc. Here in Eq. �13�, we adopted the ẑ method. In this case,
curvature is only coupled with the translations for a warped ele-
ment.

We also used the shear projection scheme introduced in Ref.
�21�. This shear projection scheme gives the transverse shear
strain components by

D̂xz = bx1I
s v̂zI + bx2I

s �̂xI + bx3I
s �̂yI �14�

D̂yz = by1I
s v̂zI + by2I

s �̂xI + by3I
s �̂yI �15�

where

1e

midv

1�

Mid surface

2�
3�

2e3e

/ 2h� �

/ 2h� � �
0� �

Fig. 1 The nomenclature of a continuum shell description

( ) 0f ��

Crack: ( ) 0f ��

( ) 0f ��

Fig. 2 Representation of discontinuity in the reference con-
figuration by a level set implicit function f„�… in the shell
midsurface

2 2,cont disc� �

1 1,cont disc� �

contv

( ) 0f �� ( ) 0f ��

Material
overlap

Crack
opening

discv

Fig. 3 Nomenclature of a fractured shell descriptions: incom-
patible material overlaps occurred at the bottom surface due to
crack opening
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�bx1I
s bx2I

s bx3I
s

by1I
s by2I

s by3I
s �

=
1

4
	2�x̄JI − x̄IK� �x̂JIȳJI + x̂IKȳIK� − �x̂JIȳJI + x̂IKȳIK�

2�ȳJI − ȳIK� �ŷJIȳJI + ŷIKȳIK� − �ŷJIȳJI + ŷIKȳIK�


�16�

along with �I ,J ,K�= ��I ,J ,K� � �1,2 ,4� , �2,3 ,1� , �3,4 ,1� , �4,1 ,
3� and x̄IJ= x̂IJ / �x̂IJ�.

3.1 Representation of the Discontinuity. The velocity field
of the fractured shell element, which is given by Eqs. �3� and �4�,
can be approximated in the XFEM by

v̂mid��,t� = NI���v̂I
cont�t� + H�f����NI���v̂I

disc�t� �17�

�̂mid��,t� = NI����̂cont�t� + H�f����NI����̂I
disc�t� �18�

However, when elementwise crack propagation is employed, we
have found that it is simpler to program the implementation in the
Hansbo and Hansbo �3� form, as developed by Song et al. �5�. The
element completely cut by a crack is represented by a set of over-
lapping elements with added phantom nodes as shown in Fig. 4.

The discontinuous velocity field is then constructed by two su-
perimposed velocity fields

v̂��,t� = v̂e1��,t� + v̂e2��,t� = �
I�S1

NI���H�− f����v̂I
e1�t�

+ �
I�S2

NI���H�f����v̂I
e2�t� �19�

�̂��,t� = �̂e1��,t� + �̂e2��,t� = �
I�S1

NI���H�− f�����̂I
e1�t�

+ �
I�S2

NI���H�f�����̂I
e2�t� �20�

where S1 and S2 are the sets of the nodes of the overlapping
elements e1 and e2, respectively. Note that velocity fields v̂e1�� , t�
and v̂e2�� , t� �or �̂e1�� , t� and �̂e2�� , t�� are nonzero only for f���
�0 and f����0, respectively, due to the Heaviside step function
H�x� that appears in the above equations. The phantom nodes are
integrated in time by the same central difference explicit method
as the remaining nodes.

3.2 Representation of Multiple Discontinuities: Crack
Branching. The concept of the overlapping element method can
be easily extended to crack branch modeling. When the original

crack, crack 1, branches into crack 1 and crack 2, as shown in Fig.
5, the element in which the crack branches is replaced with three
overlapping elements. Let f1���=0 describe the original crack and
one branch, and let f2���=0 describe the second branch. The dis-
continuous velocity field is then given by

v̂��,t� = v̂e1��,t� + v̂e2��,t� + v̂e3��,t�

= �
I�S1

NI���H�− f1����H�− f2����v̂I
e1�t�

+ �
I�S2

NI���H�− f1����H�f2����v̂I
e2�t�

+ �
I�S3

NI���H�f1����H�− f2����v̂I
e3�t� �21�

The element nodal forces are developed as in Ref. �20�. In
addition, curvature-translation coupling terms are added and a
shear projection operator replaces the previous transverse shear
terms. The principle of virtual power is used to derive the rela-
tionship for the internal nodal forces. The principle states that

�22�

where 	̄ is the shear reduction factor from the Mindlin shell

theory, and f̂ i j
r and m̂ij

r are the resultant forces and moments, which
are integrated through the element thickness.

f̂ i j
r =� 
̂ijdẑ �23�

m̂ij
r =� ẑ
̂ijdẑ �24�

where ẑ=��h /2�.
We substitute Eqs. �9�–�16� into Eq. �22�, and evoking the ar-

bitrariness of �v yields the discretized element nodal forces

e1

e2

1
2

34

1 2

67

8 5

34
Crack

surface

( ) 0f ��
( ) 0f ��

( ) 0f ��

( ) 0f ��

( ) 0f ��

Fig. 4 The decomposition of a cracked element with generic
nodes 1–4 into two elements e1 and e2; solid and hollow circles
denote the original nodes and the added phantom nodes,
respectively

e1

e2

e3

1( ) 0f ��
1( ) 0f ��

1( ) 0f ��

2 ( ) 0f ��2 ( ) 0f �� 2 ( ) 0f ��

Fig. 5 The decomposition of an element into three elements
e1, e2, and e3 to model crack branching; solid and hollow
circles denote the original nodes and the added phantom
nodes, respectively
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f̂ xI
int = Ae�bxI f̂x

r + byI f̂xy
r + bxI

c m̂x
r + byI

c m̂xy
r � �25�

f̂ yI
int = Ae�byI f̂ y

r + bxI f̂xy
r + byI

c m̂y
r + bxI

c m̂xy
r � �26�

f̂ zI
int = Ae	̄�bx1I

s f̂ xz
r + by1I

s f̂ yz
r � �27�

m̂xI
int = Ae�	̄�bx2I

s f̂ xz
r + by2I

s f̂ yz
r � − �byIm̂y

r + bxIm̂xy
r �� �28�

m̂yI
int = Ae�	̄�bx3I

s f̂ xz
r + by3I

s f̂ yz
r � + �bxIm̂x

r + byIm̂xy
r �� �29�

m̂zI
int = 0 �30�

The final form of the element internal forces in the global coordi-
nates can be determined by performing the transformation be-
tween the corotational and global coordinates as follows:

fe
int = Te

T�f̂e
int + f̂e

stab� �31�

where T is the transformation matrix between global and corota-

tional components and f̂e
int is the nodal internal force vector in the

corotational coordinate systems. In Eq. �31�, to circumvent the
rank deficiency due to one-point integration, an hourglass control

force, f̂e
stab, is added to the internal force vector. For a description

of the hourglass control scheme, see Refs. �21,22�.
For each of the overlapped elements on a crack, the nodal

forces are given by

fe
int = ��

k=1

Nele
ovr

Aek

Ae
Tek

T f̂ek

int� + Te
Tf̂e

stab �32�

where Nele
ovr is the total number of overlapped elements, Aek

is the
activated area of the corresponding overlapping elements in the
corotational coordinates, fe is the nodal force vector of a cracked

element, and f̂ek
is the corotational nodal force vector of the over-

lapped element ek. Note that the internal nodal forces of elements
ek can be calculated by multiplying Eqs. �25�–�30� by the area
fraction, Aek

/Ae. A more detailed discussion of the concept of the
modification of cracked element nodal forces by area fractions can
be found in Ref. �5�.

4 Material Model and Fracture

4.1 Hardening Plasticity for Quasibrittle Material. We em-
ployed a von Mises type hardening J2-plasticity model. For the
integration of the constitutive model we used a first-order forward
Euler explicit integration scheme. In the simulation of fracture
within the explicit simulation framework, the integration time step
is limited to a small fraction of the critical time step and is usually
smaller than a critical time step for the integration of the consti-
tutive equation.

The rate form of the constitutive equation in the corotational
system is given by

D�̂

Dt
= Ĉelas:�D̂ − D̂p� �33�

where �̂ is the corotational Cauchy stress rate, Ĉelas is the coro-

tational elastic moduli tensor, and D̂p is the corotational rate of
plastic deformation tensor. For the von Mises material with iso-
tropic hardening, the plastic corotational rate-of-deformation ten-
sor is given by

D̂p = r�̇ = r
r:Ĉelas:D̂

r:Ĉelas:r + hp

�34�

where r is J2-plasticity flow direction, �̇ is plastic flow rate pa-
rameter, and hp is the plastic hardening modulus.

4.2 Fracture Criterion and Cohesive Model. A strain-based
fracture criterion was used to determine the onset point of a post-
strain localization behavior of a material, i.e., fracture. When the
strain at a crack tip material point reaches a fracture threshold, we
inject a strong discontinuity at the previous crack tip according to
maximum principal tensile strain direction of an averaged strain,
avg. For the computation of an averaged strain, avg, we used a
nonlocal �i.e., surface weighted average� scheme, which is given
by

avg =
4

�
�

−�/2

�/2 �
0

rc

w�r�drd� �35�

where r and � are the distance from the crack tip and the angle
with the tangent to the crack path, respectively, and w�r� is weight
function; for the latter, we use a cubic spline function given by

w�r� =�4� r

rc
− 1�� r

rc
�2

+
2

3
, 0 � r � 0.5rc

4

3
�1 −

r

rc
�3

, 0.5rc � r � rc

0 otherwise
� �36�

where rc��3he� is the size of the averaging domain, and he is the
size of the crack tip element. A typical averaging domain is shown
in Fig. 6.

A cohesive crack model is prescribed along the newly injected
strong discontinuity surfaces until the crack opening is fully de-
veloped, i.e., cohesive traction has vanished. In this study, we
prescribed only the normal traction of the linear cohesive model,
as shown in Fig. 7. We have found that mode II and mode III

crack cr

r �

Fig. 6 Schematic of averaging domain: averaging domain,
which has averaging size of rc

C
oh

es
iv

e
tr

ac
tio

n

Crack opening

fG

� �nu

c�

max�

max�

pnltyk

Penalty

Fig. 7 Schematic showing of a linear cohesive law: the area
under curve is the fracture energy, Gf
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behavior is minimal in these problems, perhaps because fracture
occurs in a tearing mode.

The cohesive model is constructed so that the dissipated energy
due to the crack propagation is equivalent to the fracture energy

Gf =�
0

�max

�c��n�d� =
1

2
�max�max �37�

where �max is the maximum crack opening displacement, Gf is the
fracture energy, and �n is the jump in the displacement normal to
the crack surface, �d, which is given by

�n = n · �u��,t�����d
�38�

=n · �NI���uI
e2�t� − NJ���uJ

e1�t�����d
�39�

where n is the normal to the crack surface. Note that the cohesive
strength �max is not a constant parameter in this method. Unless
�max takes on the current value of the traction when a crack seg-
ment is injected into a continuum finite element, the cohesive
traction does not satisfy time continuity and may lead to severe
noise; see Ref. �24�.

As shown in Fig. 7, a penalty force was added in compression.
This penalty force depends only on �n and is given by �c
=�nkpnlty when �n�0. We used a value of two to three orders of
magnitudes of the normalized Young’s modulus by the element
size, i.e., E /he, for kpnlty.

The discretized form of the cohesive nodal forces is computed
by

fe
coh = �

k=1

2

Tek

T f̂ek

coh �40�

=�
k=1

2

Tek

T �− 1�k�
�d

NT�c��n�n̂d�d �41�

where k represents the overlaid element layer number.

5 Numerical Examples

5.1 Notched Cylinder Fracture Under Internal Detonation
Pressure. An interesting series of experiments concerned with the
quasibrittle fracture of shells has been reported by Chao and Shep-
herd �16�, and Chao �25�. These experiments involve notched
thin-wall pipes filled with gaseous explosives through which a
detonation wave is passed. This is accomplished in the experiment
by filling the pipe with an explosive gas and initiating a detona-
tion wave at the left end as shown in Fig. 8�a�.

In this study, we focused on numerical simulations of two ex-
perimental results, shot 7 �L=5.08 cm� and shot 4 �L=2.54 cm�
�16,25�, since these two experimental results exhibit strikingly
different growths of the fracture, which is ascribed to the length of
the notch. Chao and Shepherd �16�, and Chao �25� reported that
with a notch size of L=5.08 cm, the backward crack tip, which is
closer to the detonation initiation point, showed a curving crack
path, whereas the forward crack tip propagates only a short dis-
tance in a straight line and then bifurcated into two cracks. How-
ever, with a notch size of L=2.54 cm, the backward crack tip
curved, whereas the forward crack tip propagates only a short
distance in a straight line and then is arrested.

For the numerical simulation, we discretized the right segment
of the cylinder length of the 91.40 cm with 54,382 four-node
quadrilateral shell elements �he�0.90 mm�; see Figs. 8�b� and
8�c�. The shell material is aluminum 6061-T6 and we modeled it
with J2-plasticity, density �=2780.0 kg /m3, Young’s modulus E
=69.0 GPa, Poisson’s ratio �=0.30, and yield stress 
y
=275.0 MPa. We used linear hardening with constant slope hp
=640.0 MPa. The cohesive fracture energy Gf =19.0 kJ /m2 is
treated in terms of a cohesive law �the assigned fracture energy is
based on Refs. �26–28��.

In order to induce unsymmetrical crack propagation with an
axisymmetric shell structure and loading, we introduced a small
scatter in the yield strength of bulk material. The yield strength at
every material point is perturbed by factors ranging from �5.0%
to 5.0%: The perturbation factor is obtained from a log-normal

(a)
152.0 cm 91.40 cm

FlangeInitiator detonation tube Notched
thin-walled specimenInitiation

point

Detonation wave

(b)

3.80
cm

0, 0� �u �

91.40 cm

0.089 cm
0, 0� �u �

(c)

3.80
cm

0, 0� �u �

91.40 cm

0.089 cm
0, 0� �u �

Flange:
5.0 cm

Flange:
5.0 cm

Flange:
5.0 cm

Flange:
5.0 cm

Notch: (0.058 cm deep)
5.08 cm

Notch: (0.058 cm deep)
2.54 cm

Fig. 8 Setup for the notched cylinder fracture under internal detonation
pressure †16‡: „a… total experiment assembly, „b… notched thin-walled
specimen for shot 7, and „c… notched thin-walled specimen for shot 4

Journal of Applied Mechanics SEPTEMBER 2009, Vol. 76 / 051301-5

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



distribution around the mean value of 1.0 and a standard deviation
of 2.0%. We also considered bulk materials in which the yield
strength is perturbed by �10.0%; the results are almost identical.

For the fracture criterion, we used 6% maximum tensile strain
as the fracture strain. This strain value was used to nucleate any
new cracks and to propagate cracks, but in these simulations no
new crack were nucleated as the notches and subsequent cracks
served as the only nucleation mechanism. The cracks were propa-
gated in the direction normal to the direction of maximum princi-
pal strain.

For the applied pressure, we used a pressure time history func-
tion, p�x , t�, which is provided by Beltman and Shepherd �29� as
follows:

p�x,t� = �0, t � x/vcj

pcj exp�− �t − x/vcj�/T0� , t � x/vcj� �42�

where x is the axial distance from the detonation initiation source
to the material point, t is the simulation time, T0��3.0x /vcj� is
pressure decay time, and pcj and vcj are the Chapmand–Jouguet
pressure and detonation wave propagation velocity, respectively.
For the simulation, we used pcj =6.2 MPa and vcj =2390 m /s to
model the internal detonation wave as in Ref. �29� and applied this
pressure normal to all surfaces of the shell model throughout the
entire simulation, even after extensive fracture and large deforma-
tion. Fluid-structure interaction effects were not modeled.

Here, we need to make a remark on the way we modeled the
initial notch. The notches in the experiment were not machined
through the entire depth of the shell. In this study, we modeled the
notch by using the XFEM methodology, so we immediately al-
lowed the translational and angular velocity fields across the notch
to be discontinuous. The penalty part of the cohesive law in the
compressive regime was activated to prevent incompatibilities in
the compressive part �below the notch�, but the tensile part of the
cohesive law is not activated in the notch since the fracture in the
notch is assumed to be completed. The penalty constants for these
constraints did not affect the final results very much.

5.1.1 Cylinder With Notch Size of L=5.08 cm (Shot 7). Figure
9 shows deformed configurations and contour plots of the effec-
tive plastic stress at the beginning of the backward crack propa-
gation and just before and after the forward crack branches into
two cracks. As we can see Fig. 9�c�, the forward crack tip
branches with an angle of 45 deg and forms stress concentrations
ahead of two branched tips. In contrast to the forward moving
branched tips, the backward tip retains its straight path.

Figure 10 shows the different perspective views of the com-
puted deformed configurations at an intermediate stage at time t
=256.86 �s. Subsequently, the forward branches turn to propa-

gate along the circumferential direction. The computed final con-
figuration is shown in Fig. 11�a� along with the final experimental
configuration, which is shown at Fig. 11�b�. The computation re-
produces some of the key features of the experiment quite well. In
the computations, the crack propagates from the notch to the
backward and the forward tips. The forward propagating crack
then branches initially at 45 deg, but then turns to propagate along
the axis of the cylinder. The experimental specimen shows evi-
dence of similar crack branching and turning. As can be seen from
Fig. 11�b�, in the part of the pipe that has opened up, the crack
progresses initially at an angle, but then the final crack path is
circumferential, i.e., normal to the axis of the pipe. The computed
crack paths are quite similar. In the center of the fracture, a little
wedge shaped pipe is apparent. This is absent in the computation.

There are some discrepancies in the final configurations as can
be seen from Fig. 11. The lower flap, as computed, opens up more
than in the experiments. In the experiment, both the lower and the
upper flaps show significant bends, but these are not apparent in
the computation. This can be due to �1� absence of fluid-structure
interaction effects in the computation, �2� errors in detonation
wave loading function, particularly in the later stages, and �3� lack
of fidelity in fracture criterion or material model.

Figure 12 shows time histories of the forward and backward
crack propagation speeds. The forward crack tip starts to propa-
gate around t=210.0 �s and then linearly speeds up and shows a
peak speed around t=229.0 �s; at this point the crack branches
into two cracks. After branching, the crack tip loses speed, but
then the speed recovers and reaches a plateau.

5.1.2 Cylinder With Notch Size of L=2.54 cm (Shot 4). Ex-
periments with the shorter notch showed substantially different
crack evolution, and this is also evident in the computations. Fig-
ure 13 shows the distribution of effective plastic stress in the

(a)

(b)

(c)

Fig. 9 Evolution of crack paths and distributions of effective
plastic stress at different time steps: „a… t=213.55 �s, „b… t
=228.61 �s, and „c… t=238.01 �s. Note that finite element
nodes are plotted and crack paths are explicitly marked.

(b)

(a)

Fig. 10 Evolution of crack opening at time t=256.86 �s along
with distribution of effective plastic stress: „a… side view and „b…
top view

(a)

(b)

Fig. 11 Comparison of the final deformed shape between „a…
the simulation result and „b… the experimental result „shot 7…
†16,25‡

051301-6 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



computed deformed configuration before the backward crack
starts to rotate. As can be seen from Fig. 13�a�, the axisymmetry
of the stress field ahead of a backward crack tip is broken and then
the crack tip path exhibits a change in direction as shown in Fig.
13�b�. Note that this sudden direction change in crack path causes
a concentration of plastic strain at the kinked points and it slows
the crack speed as indicated in Fig. 14.

Figure 15 shows the different perspective views of the com-
puted deformed configuration at time t=261.98 �s. As we can
see from the figure, the backward crack turns to a circumferential
path but the forward crack tip remains in a straight path. Shortly
after this point, the strain concentration ahead of a forward crack
tip is diffused and the crack tip is arrested.

A comparison between computational and experimental results
of the final configuration is shown in Fig. 16. Again, the computed
size of the crack opening in the pipe agrees reasonably well with
the experiment and so do the crack paths, except that the transition
from the axial path to a circumferential path is quite smooth in the
experiment, but rather rough in the computation. The shapes of
the flaps are not predicted well. Evidently, fluid-structure interac-
tion effects play a substantial role in their shapes.

The computed crack propagation speeds for shot 7 and shot 4,
which are shown in Figs. 12 and 14, respectively, are somewhat
faster than the reported experimental crack speeds �maximum 250
m/s� �25�. This may be due to the shortcomings in the numerical
representation of the crack, i.e., lack of crack tip blunting and
tunneling phenomena in the numerical simulations.

5.2 Cylinder Fracture With an Initial Weak Spot. We ex-
amine fracture patterns of the cylinder shown in Fig. 17�a�. The
cylinder is initially pressurized to 6.9 MPa ��1000 psi� and then
the pressure at the center of the cylinder on a domain of radius
r=2.50 cm is increased until a fracture nucleates. We set an initial
weak spot at two different locations as shown in Figs. 17�b� and
17�c�, i.e., at the center of cylinder or close to the end cap.
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Fig. 12 Comparison propagation speeds of two crack tips for
the cylinder with the notch size of L=5.08 cm „shot 7…

(a)

(b)

Fig. 13 Evolution of crack and distributions of effective plastic
stress at time times „a… t=231.41 �s and „b… t=239.05 �s. Note
that finite element nodes are plotted and crack paths are explic-
itly marked.
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Fig. 14 Comparison propagation speeds of two crack tips for
the cylinder with the notch size of L=2.54 cm „shot 4…

(a)

(b)

Fig. 15 Evolution of crack and distributions of effective plastic
stress at time t=261.98 �s: „a… top view and „b… side view

(a)

(b)

Fig. 16 Comparison of the final deformed shape between „a…
the simulation result and „b… the experimental result „shot 4…
†16,25‡
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Since the original cylinder, which has a length of 30.48 cm, has
twofold symmetry, we modeled only half of the cylinder as shown
in Figs. 17�b� and 17�c�; ux=0 and �x=�y =�z=0 along the plane
of twofold symmetry. This is somewhat unrealistic, but we just
wish to demonstrate the ability to follow complicated crack paths.
The model is discretized with a structured mesh of 8056 four-node
quadrilateral shell elements. The rigid end cap is modeled by con-
straining all degrees of freedoms at the end cap. The material is
aluminum 5086-H32, which has material properties: density �
=2660.0 kg /m3, Young’s modulus E=71.0 GPa, Poisson’s ratio
�=0.30, and yield stress 
y =207.0 MPa. We used J2-plasticity
with a constant hardening slope hp=634.0 MPa. The fracture pa-
rameters are the same as in the previous example. The yield
strength is reduced by 10% at the weak spots.

As we can see from Fig. 18, the crack initially forms at the
weak spot and then propagates toward the end cap parallel to the
axis of the cylinder. However, as the crack tip approaches the rigid
end cap, the crack tip stress develops a strong shear component,
which causes a sudden rotation of the crack trajectory.

The rigid end cap has a significant effect on the crack path. This
can be observed by locating an initial weak spot near the rigid end
cap as shown in Fig. 17�c�. Under this setting, we originally an-
ticipated development of three crack paths: two of them propagat-
ing toward the end cap after branching, and the other propagating
toward the opposite end. However, only two crack tips are devel-

oped and propagate toward the end cap. This is due to the fact that
the stored energy was only sufficient for two cracks, but it is not
sufficient to develop a third crack toward the opposite side end.
The deformed shape with crack opening is shown in Fig. 19. As
we can see from Fig. 19, two cracks have propagated toward the
end cap with the angle of 45 deg to the center line.

6 Conclusions
A method has been developed for the prediction of dynamic

crack propagation in shells with explicit finite element methods.
The methodology is based on the XFEM �1,2�, but uses the
Hansbo and Hansbo �3� implementation where the cracked ele-
ment is treated by two superimposed elements with phantom
nodes on the cracked portions �5,7�.

A nonlocal fracture criterion based on the maximum tensile
principal strain has been developed for a quasibrittle fracture
where significant plastic deformation precedes fracture. In order
to mitigate spurious predictions of fracture, the method uses a

(b)

(a)

X

Y

Z

(c)

15.24 cm

2.54 cm

Rigid end cap

15.24 cm

0.3 cm

1.27 cm

Initial weak spot

0x zu u� �

Rigid end cap
0, 0� �u �

Initial weak spot0x zu u� �

0, 0� �u �
Rigid end cap

Twofold symmetry
boundary

Twofold symmetry
boundary

Twofold
symmetry

Fig. 17 Setup for cylinder fracture with an initial weak spot: „a… only half
of the cylinder is modeled due to the twofold symmetry, „b… cylinder with
an initial weak spot at the center of the cylinder, and „c… cylinder with an
initial weak spot close to the end cap

(a) (b)

Weak spot

Fig. 18 The computed final deformed shape along with
marked opened crack surfaces: „a… perspective view and „b…
axial view

Weak spot

(c) (d)

(a) (b)

Fig. 19 Evolution of crack opening and effective plastic strain
distributions at different times: „a… t=187.0 �s and „b… t
=252.0 �s. For a clear representation of crack opening, finite
element nodes are plotted: „c… top view and „d… side view.
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weighted average of the strain ahead of the crack tip, i.e., a non-
local strain. For the weighting function, a cubic spline that extends
to approximately the edge of the near-tip plastic field was used.

In addition, a cohesive law was used across the crack surface.
The cohesive law serves to represent plastic work and other frac-
ture processes that are not resolved by the model.

Computations were made for two of the Chao and Shepherd
�16� experiments of explosively loaded pipes. The finite element
model was simply loaded by the pressure time history of the deto-
nation traveling wave; fluid-structure interaction effects were not
considered. Nevertheless, the computations reproduce many of the
salient features of each experiment and differences in crack paths
between two experiments.

For the pipe with the longer prenotch, the computations cor-
rectly predict crack branching at one end and the subsequent
wrap-around of the crack path that severs the pipe at the other
end. In the computation, the crack is arrested before the tube is
completely severed, but there is some evidence �the notched piece
in Fig. 11� that the complete breakage involved in the experiment
a different loading. For the pipe with a shorter prenotch, a twisting
of the crack path is correctly predicted. However, the deformed
configurations observed experimentally show some deformations
of the flaps of the pipe that are not replicated in the computation.
These are probably due to fluid-structure effects that were not
modeled.

Overall, these computational results show substantial promise
for predicting the dynamic fracture behavior of explosively loaded
shell structures. They furthermore indicate that in quasibrittle dy-
namic fracture, fracture criteria based on nonlocal strains are quite
effective. It should be stressed that this observation probably only
holds for relatively thin structure in quasibrittle materials such as
aluminum, which exhibit fracture in tearinglike modes.
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Finite Element Analysis of
Plugging Failure in Steel Plates
Struck by Blunt Projectiles
In this paper, the influence of mesh sensitivity on the fracture predictions during penetra-
tion and perforation of hardened blunt-nose cylindrical steel projectiles in plates of
Weldox 460E, Weldox 700E, and Weldox 900E steel has been studied. The main objective
is to try to describe the experimentally obtained trend of a decrease in ballistic limit
velocity with increased target strength when the plates are impacted by blunt projectiles.
This behavior is due to the occurrence of highly localized shear bands as the target
strength increases. The impact tests are analyzed using the explicit solver of a nonlinear
finite element code. A thermoelastic-thermoviscoplastic constitutive model with coupled
or uncoupled ductile damage was used in the simulations. It was found that the residual
velocity continuously increases when the element size is decreased from 125 �m to
15 �m in the shear zone, and that this increase is significantly stronger for impact
velocities close to the ballistic limit. The ballistic limit decreases by up to 25% when the
size of the element is decreased from 125 �m to 30 �m; the decrease being somewhat
greater for the two steels with the highest strength. Even with the finest mesh, the experi-
mental trend of a decreasing ballistic limit with increasing target strength was not pre-
dicted in the simulations, neither with coupled nor uncoupled damage. Nonlocal simula-
tions based on smoothing of the damage and temperature fields, which are the two
variables causing the softening, were carried out for the Weldox steels and a mesh size of
30 �m. These simulations indicate a reduction in the mesh sensitivity for both the
coupled and uncoupled damage approaches when nonlocal averaging is employed.
�DOI: 10.1115/1.3129722�

Keywords: projectile perforation, Weldox steel, target strength, thermoelastic-
thermoviscoplastic damage model, numerical simulations, softening

1 Introduction
Structural impact problems are of interest to many engineering

disciplines, such as civil, automotive, offshore, military, and aero-
nautics, and have been studied in the literature for a long time
�see, e.g., the review articles given in Refs. �1–3��. Earlier these
types of problems were mainly studied experimentally. However,
the development of numerical tools such as the finite element
method �FEM� has offered new possibilities for attaining further
and more generally applicable knowledge to these complex prob-
lems, and today FEM-based computer codes play an increasingly
important role in engineering design.

One long-lasting numerical uncertainty in many impact related
problems is the influence of mesh size when the structure deforms
into strongly localized shear bands under adiabatic conditions.
Such deformation modes often appear when blunt-nose projectiles
strike metal plates at high velocities.

In presence of strain softening, related to strain localization in
the material, mesh size effects and the associated mathematical
background have been widely investigated in the literature �see,
e.g., Ref. �4� for dynamic problems, Ref. �5� for brittle materials,
and Ref. �6� where an extension is proposed to include thermal
effects and thermomechanical couplings�. It has also been shown
�7,8� that the incorporation of rate-dependent constitutive relations
introduces an implicit length scale through the viscous parameter
that may limit the localization. However, the mesh size effect in

the case of crack development due to localized adiabatic shear
banding �ASB� is still an open question and requires more inves-
tigation. Zukas and Scheffler �9� discussed various factors related
to the effects of meshing, which can lead to a disagreement be-
tween computations and experience of dynamic events. Voyiadjis
and Abu Al-Rub �10� developed a nonlocal rate-dependent and
gradient-dependent theory of plasticity and damage in order to
reduce the mesh size dependence and showed a possible applica-
tion in some particular cases of perforation of Weldox 460E steel
by a blunt projectile. An improved multiphysics modeling ap-
proach was proposed by Zhou et al. �11� and Li and co-workers
�12,13� for structural impact problems where finite element simu-
lations consider different constitutive relations for the material
inside and outside the ASB to take into account a possible phase
transformation in the material. Crack propagation due to ASB was
also captured using a simple strain-rate and temperature sensitive
model �i.e., the Johnson–Cook model �14,15�� to predict shear
bands combined with a recently developed ductile fracture crite-
rion by Teng et al. �16�.

In this paper, the influence of the mesh size on fracture predic-
tions during impact and perforation by blunt-nose projectiles will
be considered for plates of Weldox 460E, Weldox 700E, and Wel-
dox 900E steels. Particular attention is given to describing the
experimental trend of a decrease in ballistic limit with an increase
in target strength, which was obtained by Dey et al. �17�. Since no
proofs of a phase transformation were found in scanning electron
microscope �SEM� and transmission electron microscope �TEM�
investigations of the steel plates considered in this study �18�,
modified versions of the Johnson–Cook constitutive relation and
fracture criterion �19� seem reasonable for perforation predictions
and will be adopted in our simulations.
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2 Perforation of Steel Plates
Dey et al. �17� studied the effect of target strength on the per-

foration resistance of steel plates. Three different steels, namely,
Weldox 460E, Weldox 700E, and Weldox 900E �where the num-
bers indicate nominal yield stress�, were considered. Weldox is the
brand name of a series of high-strength steels, produced and de-
livered by SSAB in Sweden, which combines high strength with
high ductility and good weldability. The main difference between
the steels is caused by tempering after hot rolling. Weldox 460E is
a thermomechanical �TM� steel, and has obtained its high strength
by rolling at a particular temperature followed by controlled cool-
ing. Compared with normalized steel, TM steels have a micro-
structure containing less pearlite. Weldox 700E and Weldox 900E
are materials in a group that goes through a significant quenching
and tempering process and is termed as QT. As understood, the
microstructure of the three steels varies considerably.

To study the material behavior under impact-generated loading
conditions, the effects of strain hardening, strain-rate hardening,
temperature softening, and stress triaxiality on the strength and
ductility of the various steels have been determined. This was
done by conducting three types of tensile tests: quasistatic tests
with smooth and notched specimens, quasistatic tests at elevated
temperatures, and dynamic tests over a wide range of strain rates
�see Ref. �17� for details regarding the material tests�. Some main
results from the experimental material tests are given in Fig. 1.
The data were then used to determine the material constants given
in Table 1 for the steels using modified versions �19� of the well-
known Johnson–Cook constitutive equation �14� and fracture cri-
terion �15� �the applied models will be presented in detail in Sec.
3�. Model results are compared with the experimental data in Fig.
1. Even though some deviations are seen, the agreement between
experimental data and model predictions is satisfactory within the
given experimental range.

Perforation tests were then carried out on 12 mm thick plates
with blunt-, conical- and ogival-nose hardened steel projectiles.
Nominal diameter, mass, and Rockwell C hardness value of the
projectiles were 20 mm, 197 g, and 53, respectively, in all tests. A
compressed gas gun �see, e.g., Ref. �20�� was used to launch pro-
jectiles at impact velocities between 150 m/s and 350 m/s. The
initial and residual velocities of the projectile were measured,
while the perforation process was captured using a digital high-
speed camera system. Based on the measured data, the ballistic
limit velocities plotted in Fig. 2 were obtained. Note that the tip of
the conical-nose projectile shattered in tests with Weldox 700E
and Weldox 900E targets. The experimental results further showed
that for perforations with blunt projectiles the ballistic limit veloc-
ity �or perforation resistance� decreased for increasing strength,
while the opposite trend was found in tests with conical and
ogival projectiles. The reason for this was thoroughly discussed in
a recent paper by Solberg et al. �18� based on a metallurgical
investigation. It was found that the variation in failure mode
caused by the various nose shapes was the primary reason for the
contradictory trends. Both conical and ogival projectiles perfo-
rated the target by ductile hole enlargement, i.e., the material in
front of the moving projectile is pushed aside by plastic flow, and
it seems reasonable to assume that projectiles giving such a failure
mode require more work to perforate a material when the strength
increases. Thus, the ballistic limit velocity will increase for in-
creasing material strength when using conical and ogival projec-
tiles. For blunt projectiles, on the other hand, the targets fail by
shear plugging. Here, strongly localized adiabatic shear bands
were observed throughout the target plates after impact �see Fig.
3�. It was found that the width of the shear band decreased sig-
nificantly with increasing material strength �from more than
100 �m for Weldox 460E to less than 10 �m for Weldox 900E�,
which is a reasonable explanation for the decreasing ballistic
limit. Even though white bands of intense shear were seen in the
strongest targets after penetration, no proofs of a phase transfor-
mation were found in the consecutive SEM and TEM studies.

Thus, it was concluded that the temperature inside the bands had
never reached the temperature necessary for a phase transforma-
tion to austenite �at about 730 °C� in the 12 mm thick target
plates �but proofs of such a phase transformation were found in 20
mm thick Weldox 460E steel plates impacted by blunt projectiles�.

Finally, numerical simulations of the experimental tests were
carried out using the nonlinear finite element code LS-DYNA �21�.
It was found that the numerical simulations were able to describe
the physical mechanisms in the perforation events with good ac-
curacy. However, the experimental trend of a decrease in ballistic
limit with an increase in target strength for blunt projectiles was
not obtained with the numerical models used in the study by Dey
et al. �17�. The obvious reason for this seems to be the change in
strain localization, going from deformed to localized shear bands
when the target strength increases �see Fig. 3�. Since the width of
the localized shear bands was much smaller than the smallest
element size used in the numerical models, it is not surprising that
the simulations failed to capture the drop in ballistics limit veloc-
ity with increasing target strength. For conical- and ogival-nose
projectiles, on the other hand, where the strong shear localization
with increasing target strength was not seen, a good agreement
between the experimental data and numerical results was found.

3 Constitutive Equations and Regularization Tech-
niques

The numerical simulations are carried out based on a phenom-
enological material model proposed by Børvik et al. �19�. The
thermoelastic-thermoviscoplastic constitutive model with coupled
or uncoupled ductile damage relies on modified versions of the
constitutive relation �14� and fracture criterion �15� by Johnson
and Cook. The model allows for large plastic strains, high strain
rates, and adiabatic heating. The reader is referred to Ref. �19� for
the detailed formulation of the modified model �see also Ref.
�22��, while the main relations are recalled below for complete-
ness.

The coupling between damage and plasticity is expressed using
the effective stress concept �23�. Then, with the assumption of
isotropic strain and strain-rate hardening and isotropic ductile
damage, the equivalent stress �eq is defined by

�eq = �1 − �D��A + Brn��1 + ṙ��C�1 − T�m� �1�

where � is the coupling parameter �i.e., when �=1, damage is
coupled with the constitutive equation; when �=0, no coupling is
considered�. The five material constants A, B, n, C, and m are
determined from material tests. The internal variable r governs
isotropic hardening and ṙ�= ṙ / �̇0 is a dimensionless strain-rate,
where ṙ is the rate of r and �̇0 is a user-defined reference strain-
rate. The homologous temperature T� is given as T�= �T
−T0� / �Tm−T0�, where T, T0, and Tm are the current temperature,
the room temperature, and the melting temperature, respectively.

The associated flow rule is adopted, and r is then identified as
the damage accumulated plastic strain

ṙ = �1 − �D�ṗ �2�
where

ṗ =�2

3
�̇p:�̇p �3�

Here, �̇p is the plastic rate-of-deformation tensor. The evolution of
temperature is computed from the energy balance by assuming
adiabatic conditions

Ṫ = �
�eqṗ

�Cp
�4�

where � is the density, Cp is the specific heat at constant pressure,
and the Taylor–Quinney empirical constant � is the fraction of
plastic work converted to heat �generally �=0.9�.
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Fig. 1 Comparison between experimental data and model results for Weldox 460E, Weldox 700E, and Weldox 900E †17‡
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Based on the Johnson and Cook failure strain model �15�, the
evolution of the damage variable is defined as �19�

Ḋ = � 0 for p � pd

Dc
ṗ

pf − pd

for p � pd � �5�

where Dc is the critical damage, pd is a damage threshold, and pf
is the fracture strain for dynamic loading, depending on the values
of stress triaxiality, strain rates, and temperature

pf = �D1 + D2 exp�D3�����1 + ṗ��D4�1 + D5T�� �6�

where D1 ,D2 , . . . ,D5 are five additional material constants, ��

=�H /�eq is the stress triaxiality ratio, where �H is the hydrostatic
stress, and ṗ�= ṗ / �̇0. It is assumed that Dc�1 is a material con-
stant and further that pd=0. Note that for each material, one set of
material constants is identified when the constitutive relation is
uncoupled from damage softening ��=0�, and another set of ma-
terial constants is used when damage softening is taken into ac-
count in the constitutive relation ��=1�.

For an uncoupled damage model, material constants for the
three different steels are presented in Table 1 �17�. For the coupled
damage model, the critical damage Dc is assumed equal to 0.3
�see Refs. �19,23��. When damage is coupled to the constitutive
relation, the damage softening is taken into account through the
hardening parameters. The strain hardening constants B and n at
��=1 /3 are then determined by minimizing the residual between
the stress-strain curves obtained with, respectively, the uncoupled
and coupled models at quasistatic strain-rate and room tempera-
ture, using the method of least-squares. The agreement between
the stress-strain curves under such conditions for the uncoupled
and coupled models is shown in Fig. 4. Model constants for the
three different steels affected by damage coupling are listed in the
brackets in Table 1. Additional material constants for the steels
required in the numerical simulations are listed in Table 2. The
hardened steel projectile was modeled using a bilinear elastic-
plastic von Mises material with isotropic hardening �i.e., Material
Type 3 in LS-DYNA� and the material constants are given in Table
3 �see Ref. �19� for details and material tests�.

Sufficiently small finite elements have to be used to discretize
the target in simulation of projectile impact to take into account

Table 1 Uncoupled and coupled „in brackets… modified JC-constants for the steels

Material Weldox 460 E Weldox 700 E Weldox 900 E

Yield stress A �MPa� 490 859 992
Strain hardening B �MPa� 383 �656� 329 �785� 364 �988�

n 0.45 �0.77� 0.58 �0.97� 0.57 �0.99�
Strain rate hardening C 0.0079 0.0115 0.0087
Temperature softening m 0.893 1.071 1.131
Fracture strain D1 0.636 0.361 0.294

D2 1.936 4.768 5.149
D3 	2.969 	5.107 	5.583
D4 	0.014 	0.0013 0.0023
D5 1.014 1.333 0.951
Dc 1 �0.3� 1 �0.3� 1 �0.3�

Fig. 2 Experimentally obtained ballistic limit velocities for the
three steels for blunt-, conical-, and ogival-nose steel projec-
tiles †17‡

Fig. 3 Pictures of shear bands in the various steels after penetration by a blunt projectile †18‡
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high stress and strain gradients. But pathological mesh size depen-
dency may also appear, since material softening is considered in
the model �24�. According to Needleman �7�, an implicit length
scale appears for a rate-dependent model that may limit this
pathological effect when the internal length scale is dominant over
the size of the elements. However, for ballistic impacts a numeri-
cal study performed by Teng et al. �16� has shown that this vis-
cous length scale �of the order of 1 �m� is too small to control
the development of adiabatic shear bands. Therefore, in an attempt
to reduce the influence of mesh sensitivity on the fracture predic-
tions, simulations could be performed by introducing an explicit
length scale into the constitutive equation using the nonlocal
method of Pijaudier-Cabot and Bãzant �24�.

In nonlocal simulations carried out with the explicit solver of
LS-DYNA �21�, the local history variable f is replaced by an “av-

erage” f̄ of the variable within the neighborhood 
r of radius L
using the material card *MAT_NONLOCAL described as follows

f̄�x� =
1

Wr
�


r

w�x − y�f�y�d
 �7�

where

Wr =�

r

w�x − y�d
 �8�

and

w�x − y� =
1

	1 + 
 �x − y�
L

�pq
�9�

Here, w is the nonlocal weight function, x and y are position
vectors, and the parameters p and q determine the bell-shape of
the weighting function.

Two variables in the constitutive relation, namely, the damage
D and the temperature T, cause softening in the material during
straining, and must thus be smoothed. At each time increment, the
nonlocal damage Dnloc and the nonlocal temperature Tnloc can be
computed applying the nonlocal integral operator on the plastic
strain rate. Similar effects may be obtained by applying the non-
local operator directly on each internal variable causing softening,
but this increases the cost of computation. The increments of the
nonlocal variables are defined as

�Dnloc = Dc
�p

pf − pd
�10�

and

�Tnloc = �
�eq�p

�Cp
�11�

During simulations using nonlocal averaging, the flow stress is
computed simply by using nonlocal values of damage and/or tem-
perature while the plastic strain and strain rate are always deter-
mined locally.

Voyiadjis and Abu Al-Rub �10� proposed to include several
length scales and a possible variation of length scales with the
state of loading, as a function of different mechanisms associated
with softening. However, in our simulations these possible effects
will be neglected, and the same length scale is introduced in order
to compute the two nonlocal internal variables �i.e., Dnloc and
Tnloc� associated to material softening. This length scale is further
associated with the element size used in the finest mesh that is
applied in the simulations, which again was limited by the com-
putational resources available. Based on this, simulations were
performed with a length scale of 30 �m, which is about three
times the measured average grain size of the steels �18�. In the
nonlocal averaging algorithm, the elements included in the nonlo-
cal volume of interaction are obtained by computing the distance

Fig. 4 Stress-strain curves obtained with the uncoupled and coupled
model at quasistatic strain-rate and room temperature

Table 2 Additional material constants for the steels

Elastic constants and density Strain rate hardening Temperature softening and adiabatic heating

E
�GPa� �

�
�kg /m3�

�̇0
�s−1�

Tr
�K�

Tm
�K�

Cp
�J/kg/K� �


�K−1�

210 0.33 7850 5�10−4 293 1800 452 0.9 1.2�10−5
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between the integration points �at the center of each element�. The
coefficients p and q of the bell-shaped weighting function in Eq.
�9� are chosen constant and equal to p=8 and q=2 in all simula-
tions to have a strong nonlocal effect in all the region of interac-
tion determined by the length scale.

4 Numerical Simulations
Following the work of Dey et al. �17�, a mesh sensitivity study

is performed where various refined meshes are used in the attempt
to describe the experimental trend of a decrease in ballistic limit
with an increase in target strength when struck by blunt projec-
tiles. All impact tests are analyzed using the explicit solver of the
nonlinear FE code LS-DYNA �21�, using the material model and the
procedures described above.

Four-node axisymmetric elements with one integration point
and stiffness-based hourglass control are used. Considering iden-
tical initial conditions to those used in a corresponding experi-
mental test �regarding geometry, initial projectile velocity, bound-
ary conditions, etc.�, simulations are repeated using an initial
element size in the impact region of 125 �m, 60 �m, 30 �m,
and 15 �m �see Fig. 5�. This gave from 96 to 800 elements over
the thickness of the 12 mm thick steel plates. In order to satisfy

the stability criteria, time increments of the order 10−9–10−11 s
are used for the coarsest and finest meshes, respectively.

Element erosion by an element-kill algorithm available in LS-

DYNA is used in the simulations to remove elements that have
reached various fracture criteria. In addition to the damage crite-
rion, giving element erosion when D equals Dc, two other erosion
criteria were adopted. First, a temperature-based fracture criterion,
causing element erosion when the temperature T within an ele-
ment reaches a critical value given as Tc=0.9Tm, was used to
remove elements that had practically lost all their shear strength.
Second, a shape-based fracture criterion was adopted, which
erodes the element when the aspect ratio, identified as the ratio
between the diagonals in the case of rectangular elements, reaches
a critical value equal to 0.05. The two latter fracture criteria were
included to avoid numerical problems in severely distorted ele-
ments. Note that the last failure criterion only acted on pathologi-
cal elements, which were prejudicial to the simulation �causing
premature termination� and the value was fixed in order not to
disturb the crack prediction too much, which is mainly conducted
by the damage failure criterion. The result of including these fail-
ure criteria in the simulations will be discussed in more details
below.

Figure 5 shows how the projectile and target plate are meshed.
The mesh is much finer in the target than in the projectile. Fur-
thermore, the plate is divided into different regions with different
fineness of the mesh, and a very fine mesh is applied in the region
where the adiabatic shear band is expected. An example of the
adiabatic shear banding process is given in Fig. 6 for the Weldox
700E plate, as fringes of accumulated plastic strain. It is seen that
a zone of intense shear develops in the plate below the periphery
of the projectile, leading to crack propagation through the plate
from the top side to the bottom side. The projectile then perforates
the plate by pushing out a nearly cylindrical plug. The experi-
ments showed that the shear zone became more localized and
intense as the strength of the material increased. Figure 7 com-
pares the accumulated plastic strain field for the Weldox 460E
�left� and Weldox 700E �right� plates. It is clearly seen that the
shear zone is more localized also in the simulation when the target
strength increases, and thus this experimental trend is captured.
We further notice that the crack propagates in front of the projec-
tile, which was also seen in the experiments �17,19�.

The effect of mesh size on the velocity-time curve is shown in
Fig. 8 for simulations of a Weldox 700E plate struck by the pro-
jectile at an initial velocity of 300 m/s, using uncoupled damage
without nonlocal averaging. By reducing the element size from
125 �m to 15 �m, the computational time increased from about

Table 3 Material constants used for the hardened steel projec-
tile †19‡

E
�GPa� �

�
�kg /m3�

�0
�MPa�

Et
�MPa�

204 0.33 7850 1900 15,000

Fig. 5 Axisymmetric finite element model used in the penetra-
tion analysis for a 12 mm thick plate with a diameter of 500 mm
and initial element size of 30 �m in the impact region

Fig. 6 Effective plastic strain field development during perforation of a Weldox 700E plate, obtained with the coupled
ductile damage model for an initial projectiles velocity vi=265 m/s
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2 CPU hours to more than 150 CPU hours when running on a HP
dual quadcore 2.66 GHz �16 Gbyte RAM� workstation. The re-
sidual velocity continuously increases as the element size be-
comes smaller, and the solution has not converged even for the
smallest element size. The reason for the steady increase in the
residual velocity is intensified strain localization as the elements
in the shear zone get smaller.

Due to the severe increase in CPU-time and added numerical
difficulties when using an element size of 15 �m, it was decided
to use a minimum element size of 30 �m in the remaining simu-
lations. The residual velocities obtained by the uncoupled damage
model and the local approach for Weldox 460E with respect to
mesh density are plotted for various initial velocities in Fig. 9. The
results show that the residual velocity increases �indicating a de-
crease in ballistic limit velocity or capacity� when the mesh is
refined, and the effect becomes stronger for simulations close to
the ballistic limit velocity. Similar results were observed for the
Weldox 700 E and Weldox 900 E steels. From this it may be
concluded that the effect of mesh size in ballistic problems should
always be studied at impact velocities close to the numerical bal-
listic limit of the target in order to ensure reliable results.

The analytical model by Recht and Ipson �25� was then used to
compute the ballistic limit velocity vbl based on a number of runs.
The Recht–Ipson model may be generalized as

vr = �0 for 0 � vi � vbl

a�vi
p − vbl

p �1/p for vi � vbl
� �12�

where vi and vr are the initial and residual velocities of the pro-
jectile, respectively. For impact velocities higher than the ballistic
limit, i.e., vi�vbl, the Recht–Ipson model can be rewritten as

vbl = �vi
p − �vr/a�p�1/p �13�

Considering projectile residual velocities from simulations for at
least three distinct initial velocities, estimates of vbl can be ob-
tained using the method of least-squares when values for the
model constants a and p are taken from the experimental study by
Dey et al. �17�.

Based on Eq. �13�, the ballistic limit velocities for the various
steels were computed as a function of element size using un-
coupled and coupled damage without nonlocal averaging. The re-
sults are shown in Fig. 10 and confirm in all cases the same type
of mesh dependence as observed in Fig. 9 �where only the un-
coupled model for Weldox 460E was considered�. From these
plots it is seen that the ballistic limit velocity decreases with up to
25% when the mesh size is decreased from 125 �m to 30 �m.

Fig. 7 Effective plastic strain field during penetration at t=21 �s „initial velocity vi=300 m/s, initial element size of 15 �m
in the impact region…: „a… Weldox 460E and „b… Weldox 700E

Fig. 8 Effect of mesh-size on the velocity-time curve from
simulations using an uncoupled approach during perforation
of a Weldox 700E plate at an initial velocity of 300 m/s

Fig. 9 Mesh-size sensitivity on the residual velocity of Weldox
460E for different initial impact velocities using an uncoupled
model and a local approach
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The decrease seems to be somewhat stronger for Weldox 700E
and 900E than for Weldox 460E, which is consistent with the
metallurgical study showing more intense shear bands for the two
steels of highest strength.

Ballistic limit velocities obtained using uncoupled and coupled
damage and the local approach �i.e., without nonlocal averaging�
are compared with the experimental data in Fig. 11. The experi-
mentally obtained trend of a decreasing ballistic limit velocity

with increasing target strength is not reproduced in the simulations
even with an element size of 30 �m. Weldox 460E consistently
obtains the lowest capacity for both uncoupled and coupled simu-
lations. The uncoupled simulations give slightly higher capacity
for Weldox 700E than for Weldox 900E, in agreement with the
experimental observations. The predicted ballistic limit shows a
steady increase with plate hardness for the simulations with
coupled damage and is significantly higher than in the uncoupled
simulations for Weldox 700E and Weldox 900E. The coupled and
uncoupled damage formulations were calibrated to give about the
same stress-strain behavior in uniaxial tension, i.e., for stress tri-
axiality equal to 1

3 . For higher stress triaxiality �or more tension�,
damage will grow faster and the coupled damage model will give
lower strength than the uncoupled one due to softening. On the
contrary, for lower stress triaxiality �or higher pressures�, the evo-
lution of damage will be slowed down �as compared with uniaxial
tension�, and accordingly the coupled damage model will give the
highest strength. In the first phase of the plugging problem, the
stress state is dominated by high pressures, in particular for the
high-strength steels Weldox 700E and 900E, and this is believed
to be the cause for the higher ballistic limit velocity obtained with
the coupled damage model for these materials. Although time con-
suming, a mesh size finer than 30 �m should be used in the shear
zone to capture the strain localization properly for the two steels
with the highest strength. However, this is not practical with to-
day’s personal computers, and supercomputing using massive par-
allel processing �MPP� may be required.

Fig. 10 Mesh-size sensitivity on the ballistic limit velocity for the three steels using a local approach in the simulations

Fig. 11 Ballistic limit velocities for the three steels with an
initial element size of 30 �m in the impact region: comparison
between uncoupled and coupled models

Fig. 12 Ballistic limit velocity for the three steels showing the influence of mesh size and nonlocal averaging: uncoupled
simulations to the left and coupled simulations to the right
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Nonlocal simulations were performed for the Weldox steels us-
ing 30 �m element size and a nonlocal radius L equal to 30 �m.
It should be noticed that the length scale introduced in the nonlo-
cal simulations is still too high to take properly into account the
inelastic process in the strongly localized adiabatic shear bands of
Weldox 700E and Weldox 900E. Element sizes less than 10 �m
would be necessary to run more appropriate nonlocal simulations
for these materials, which was not feasible with the available
computer facilities �without using MPP�.

The effect of nonlocal regularization on the predicted ballistic
limit for Weldox 460E steel is shown in Fig. 12. Since a nonlocal
radius L=30 �m was adopted in the simulations, nonlocal simu-
lations were only performed with the finest mesh having an ele-
ment size equal to 30 �m. In the uncoupled simulations, nonlocal
averaging leads to an increase in the ballistic limits compared with
the local approach; the increase is being about the same for all
steels. The effect is higher when both the variables causing soft-
ening are made nonlocal. The picture is somewhat less clear for
the coupled simulations, even though nodal averaging consistently
leads to higher capacity compared with the local approach. It tran-
spires that the effect of nodal averaging is much stronger for Wel-
dox 700E than for the other two steels. In general, it seems like
the simulations with nodal averaging of both temperature and
damage give about the same capacities as the simulations with
60 �m element size.

Simulations can also be envisaged by introducing two distinct
material length scales to take into account the variations of tem-
perature and damage distribution in the impact region, but once
again such simulations are limited by computer capacity. Another
possible route is to include thermocoupling in the simulation to
get a better prediction of the temperature distribution in the nar-
row shear zone, especially since the high temperatures seen in the
FE simulations could not be proven in metallurgical investigations
of the impacted plates �18�.

As described above, three different erosion criteria were used in
the simulations, based on damage, temperature, and the aspect
ratio of the element. For the softest steel �Weldox 460E�, the
elements were eroded by reaching the critical damage and tem-
perature, with only some few exceptions. Figure 13 shows the
damage and temperature fields for one simulation for a Weldox
460E target plate. It is seen that there is a concentration of highly
damaged elements along the crack path, while the temperature
field is more diffused except for a small region in the first part of
the crack path. In this region, the pressure is high �low stress
triaxiality� and thus the damage evolution is slow – implying that

high temperatures may be important for the initiation of crack
propagation. Similar plots are shown for Weldox 700E in Fig. 14.
In this case, we see almost no damage evolution along the first
part of the crack path, while the temperature is high and more
localized. The reason is the very high pressure in this zone, allow-
ing for large plastic strains without damage �see also top right in
Fig. 1�. However, in the final part of the crack path, the damage is
high and is governing the crack propagation, because here the
stress triaxiality becomes positive. Thus, the plastic strain at frac-
ture is lower, leading to less mechanical dissipation and less tem-
perature increase. Owing to the large plastic strain and low dam-
age in the upper part of the crack path, fracture was initiated either
by the temperature criterion or the aspect-ratio criterion for the
two steels of highest strength. The temperature fields due to plas-
tic work displayed in Figs. 13 and 14 correspond quite well with
the micrographs of diffuse versus localized shear bands revealed
in the plates after impact �see Fig. 3�. It should also be commented
that the crack propagation seems somewhat limited by the size of
the refined region, and that the crack seems to branch into two
cracks close to the rear side of the Weldox 700E plate �Fig. 14�.
This is consistent to the jagged surface of the plug observed ex-
perimentally for the highest strength steels, while the surface of
the plug was smooth for the Weldox 460E steel �17�.

The aspect-ratio criterion is a purely numerical criterion used to
get rid of troublesome elements that would lead to premature ter-
mination, and it was set to 0.05 in all simulations. Since the initial
aspect ratio of the elements was unity, this represents a highly
deformed element. To investigate the effect of the value of this
criterion on the predicted residual velocity a limited sensitivity
study was undertaken for a Weldox 700E plate. The results are
shown in Fig. 15. It transpires that there is no effect on the re-
sidual velocity, provided that the critical aspect ratio is set equal to
or less than the chosen value of 0.05. On the other side, if this
value is taken too high, it will certainly affect the residual veloc-
ity. In general, a higher residual velocity is expected when the
value of the critical aspect ratio increases, but for the chosen
example the residual velocity actually decreases. The reason for
this is that additional elements outside the primary crack path
were deleted, disturbing the complete perforation process and
leading to unphysical results. We further found that when the criti-
cal aspect ratio was less than or equal to 0.05, only some few
elements were deleted due to this criterion, mainly in the initial
stage of impact, while the bulk of elements was eroded by damage
or high temperature.

Fig. 13 Perforation of Weldox 460E „coupled simulations with initial velocity vi=265 m/s and initial element size of 15 �m
in the impact region…: „a… damage field and „b… temperature field
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5 Concluding Remarks
In this paper we have studied the influence of mesh size on

fracture predictions during ballistic impact of hardened blunt-nose
cylindrical steel projectiles in target plates of Weldox 460E, Wel-
dox 700E, and Weldox 900E steels. Such impact problems cause
failure by shear plugging, where the deformation localizes into
narrow adiabatic shear bands.

A thermoelastic-thermoviscoplastic constitutive model with
coupled or uncoupled ductile damage was used to carry out the
numerical simulations. The effect on the ballistic limit velocity by
introducing a length scale into the constitutive equations using a
nonlocal approach was also investigated. In this approach, nonlo-
cal averaging of the damage and temperature fields, which are the
two variables causing the softening in the material during plastic
straining, were considered. Mesh refinement was used in an at-
tempt to describe the experimental trend of a decrease in ballistic
limit velocity with an increase in target strength for blunt projec-
tiles due to the occurrence of highly localized shear bands.

Considering the various steels, mesh size dependence was ob-
served for both uncoupled and coupled models, leading to in-
creased residual projectile velocities and reduced ballistic limit
velocities as the element size was refined. Even with an initial
element size of 30 �m in the impact region, the experimental
trend of a decrease in ballistic limit velocity with increasing ma-
terial strength for blunt projectiles was not predicted. The mini-
mum size mesh used in the impact region in this study still ap-
pears high compared with the width of the localized shear bands
measured in impacted plates of Weldox 700E and Weldox 900E.

Nonlocal simulations were performed for the Weldox steels
with 30 �m mesh size and nonlocal radius 30 �m. When nonlo-
cal averaging of both the damage and temperature fields is ap-
plied, the mesh sensitivity of the ballistic limit velocity is reduced
for both the coupled and uncoupled models.

The simulation of ductile fracture during projectile perforation
is conditioned by the ability of the constitutive model to take into
account the complex processes of material degradation. The as-

Fig. 14 Perforation of Weldox 700E „coupled simulations with initial velocity vi=265 m/s and initial element size of 15 �m
in the impact region…: „a… damage field and „b… temperature field

Fig. 15 Influence of the value of the critical element aspect ratio „from
0.001 to 0.075… on the residual velocity versus time curve in penetration for
Weldox 700E „coupled simulations with element size 30 �m…
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sumptions made in the simple isotropic damage law adopted in the
current study should therefore be considered, and further investi-
gations will be performed to improve the damage formulation and
to evaluate its consequences on the prediction of the ballistic limit
velocity.

The influence of mesh size in simulations of plugging has, in
this paper, been investigated in a rather heuristic manner, and the
current conclusions are based on the comparison of a limited num-
ber of experimental data with complex numerical simulations at a
structural level. To gain a better understanding of the mesh size
effect in simulations of dynamic fracture, a more rigorous ap-
proach should be taken and discussed in a concise mathematical
way.
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Fluid-Structure and Shock-Bubble
Interaction Effects During
Underwater Explosions Near
Composite Structures
There is an increasing interest in the use of composites for marine/naval structures to
reduce weight and maintenance cost, and to improve hydrodynamic and/or structural
performance. In particular, recent works suggest that the use of a lightweight, soft core
layer can significantly reduce the load transfer to the back layer of a sandwich structure
when subjected to shock or impulse loads. The objective of this work is to investigate the
role of fluid-structure interaction (FSI) and shock-bubble interaction in the transient
response of composite structures during underwater explosions (UNDEX). The spatial
distribution of UNDEX loads is different from uniform planar shocks due to the spheri-
cally propagating pressure front, and the temporal characteristics are also different due
to the importance of shock-bubble interactions. Both effects influence the FSI response of
the composite structure. A previously validated 2D Eulerian–Lagrangian numerical
method is used to investigate fluid-structure and shock-bubble interaction effects during
UNDEX near composite structures. Via a series of numerical experiments, the relative
importance of different effects, namely, the Taylor’s FSI effect (1963, “The Pressure and
Impulse of Submarine Explosion Waves on Plates” Scientific Papers of G. I. Taylor, 3, pp.
287–303), the bending/stretching effect, the core compression effect, and the boundary
effect, are quantitatively and qualitatively evaluated. Insights for practical modeling,
analysis, and design of blast-resistant sandwich structures are also drawn from the
analysis. �DOI: 10.1115/1.3129718�

1 Introduction
Since the pioneering analytical works of Taylor �1�, it has been

recognized that fluid-structure interaction �FSI� can be exploited
to reduce the momentum transmitted to a free-standing air-backed
plate against underwater shock or impulse loads. Recently, Tay-
lor’s 1D analytical model was extended by Kambouchev and co-
workers �2,3� to account for the effects of nonlinear fluid com-
pressibility for air-backed plates of arbitrary mass and shock
intensity. They found that the beneficial reduction in momentum
transmitted to the structure due to FSI is more significant when
nonlinear fluid compressibility is considered, which further en-
courages the use of thin lightweight structures for blast resistance.
More recently, Taylor’s analytical model was extended by Liu and
Young �4� to study the influence of backing conditions �i.e., air-
backed versus water-backed� on the fluid response and structural
dynamics of a rigid free-standing plate. They showed that a water-
backed plate experiences higher interface pressure, but lower net
pressure loading between the face and the back of the plate. The
added resistance provided by the water on the back face reduces
the structural response, shortens the time to reach peak momen-
tum, and lengthens the time to reach cavitation inception.

In addition to the above analytical models of rigid free-standing
plates, recent theoretical and experimental works �e.g., Refs.
�5–14�� have significantly expanded the knowledge on the dy-
namic response of metallic sandwich beams and plates subject to
underwater shock and blast loads. In Ref. �7�, an analytical three-
stage model was introduced to temporally decouple the mechani-
cal responses of metallic sandwich plates with soft cores into a
sequence of distinct phases with different time scales. According

to their model, the first stage concerns the response of the front
face to the primary shock, which can be simplified as a free-
standing rigid plate subject to an acoustic impulse load. The plate
motion and the rarefaction wave reduce the pressure to zero,
which initiates cavitation. In the second stage, the front face de-
celerates while compressing the soft core, and the transmitted mo-
mentum accelerates the back face until all three layers reach a
common velocity. In the final stage, the sandwich structure be-
haves as a homogeneous monolithic beam, and the mechanics is
dominated by beam bending and stretching until the structure is
brought to rest. This three-stage model introduced by Fleck and
Deshpande �7� was later extended by Deshpande and Fleck �8�
and Hutchinson and Xue �9� to consider the sandwich structures
with varying core strengths. The effects of cross-coupling between
the three stages were discussed in Refs. �10,13,15,16� by compar-
ing decoupled and coupled solutions via numerical simulations.
They found that the coupling between the FSI and core compres-
sion stages can significantly increase the momentum transmission
and back face deflection, while the coupling between the core
compression and beam bending/stretching stages can reduce the
back face deflection. In Ref. �10�, they defined the process as
decoupled and coupled, respectively, depending if the front and
back face velocities equalize while or after the back face attain its
maximum velocity. In both cases, partial or complete densification
of the core can occur. For high intensity shocks or very low
strength cores, slapping may occur where the front face slams into
the back face due to full densification of the core, leading to loss
of bending strength and high support reactions �10�.

In all of the above mentioned theoretical and experimental stud-
ies, the focus was on the mechanical behavior of sandwich com-
posite structures subject to water blast loads, where the incoming
pressure pulse is idealized as a uniform shock over the entire
length of the plate. Hence, the first FSI stage and the second core
compression stage can be idealized as 1D, while a 2D model is
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used to solve for the third beam bending/stretching stage. The
effect of cavitation reloads due to subsequent cavitation collapses
is assumed to be negligible. In an underwater explosion �UN-
DEX�, however, these assumptions may not be valid because the
mechanics are dominated by spherically propagating pressure font
and shock-bubble interactions. The conversion of solid explosives
to a gaseous state releases a large amount of energy at a very high
rate, creating a high intensity shock wave followed by an expand-
ing gas front that propagate spherically outward from the point of
detonation �17�. Hence, the initial shock impact and momentum
transmission to the front face is also nonuniform, and the resulting
structural deformation leads to a semispherical wave with a local-
ized rarefaction component propagating back toward the expand-
ing gas bubble. Depending on the strength of the initial shock and
the rate of structural deformation, cavitation may be created at the
low-pressure region. The interaction of the reflected wave with the
expanding gas bubble creates another rarefaction wave reflecting
back toward the structure. The collision of the two low-pressure
regions between the expanding gas bubble and the structure cre-
ates a minimum pressure region that further encourages cavita-
tion. The cavitation that forms under either scenarios will quickly
collapse due to the surrounding high pressure, creating a very
localized secondary reload to the already weakened structure. As
shown in Ref. �18�, the pressure oscillations at the wet face due to
bubble-shock interaction during a close-in UNDEX can be signifi-
cant in magnitude and duration even in the absence of a cavitation
for both rigid and deformable targets. Hence, the spatial and tem-
poral variations of the pressure pulses exerted on the wet face, and
the transient interactions with the sandwich structure due to UN-
DEX can lead to very different fluid and structural responses from
a uniform planar shock impact.

1.1 Objective. The objective of this work is to investigate the
role of FSI on the transient response of composite structures sub-
ject to UNDEX. The response of marine structures subject to UN-
DEX has been studied intensely since �17�. However, most of
them focused on isotropic and homogeneous structures that are
relatively stiff. An excellent compilation of analytical, numerical,
and experimental UNDEX benchmarks can be found in Ref. �19�.
Recent works such as Refs. �20–22� have also examined the tran-
sient response of composite structures subject to UNDEX, but the
structures examined are typically made of high strength and high
stiffness material such as glass fiber-reinforced polymer �GRP�
laminates, and thus the structural deformation and FSI effects are
limited. Hence, the mechanical responses of thin lightweight com-
posite structures that can undergo significant deformations during
UNDEX should be investigated. The objective of this paper is to
use a previously validated 2D Eulerian–Lagrangian numerical
method to investigate the transient response of sandwich struc-
tures during UNDEX. The focus is to investigate the different
coupling effects and their relative significance during UNDEX
near sandwich structures. Insights for practical modeling, analysis,
and design of blast-resistant sandwich structures are discussed.

2 Methodology
In this work, the strongly coupled 2D Euelerian–Lagrangian

FSI solver presented in Refs. �23,24� is used to study the fluid and
structural responses of composite structures and shock-bubble in-
teractions during UNDEX. Notice that 3D effects, which are es-
sentially important for more complex configurations such as ma-
rine propellers, rudders, and ship hulls, are neglected in the
current work. However, the extension of the current methodology
to 3D is straightforward. For the sake of completeness, the nu-
merical methodology is summarized below.

The UNDEX event is assumed to take place in a cold water
environment, where the dominant driving force is the fluid pres-
sure. The thermal, viscous, and surface tension effects are as-

sumed to be negligible for the fluid. The resulting governing equa-
tions for the compressible fluid �Eq. �1�� and equations of state
�EOSs� �Eqs. �2�–�4�� are

�U

�t
+

�F�U�
�x

+
�G�U�

�y
= 0 �1�

p = ��g − 1��e for the gas �2�

p = B��/�o��l − B + A for the water �3�

� =
K�g

cav + �l
cav

� p̄

p̄cav
�−1/�l

+ K� p

pcav
�−1/�g

for the cavitation mixture

�4�
where

U = ��,�u,�v,E�T �5�

F�U� = ��u,�u2 + p,�uv,�E + ��u�T �6�

G�U� = ��v,�uv,�v2 + p,�E + ��v�T �7�

where, p, �, u, and v are the flow pressure, density, and velocity in
the horizontal �x� and vertical �y� directions, respectively. The
fluid density is calculated using �=��g+ �1−���l, where �l and �g
are the densities of the liquid and vapor components, respectively,
and � is the void fraction. �=0 and �=1 indicate a pure liquid
and a pure gas �vapor�, respectively. E=�e+0.5��u2+v2� is the
total energy, where e is the internal energy per unit mass.

Equations �2�–�4� are the perfect gas law, barotropic Tait’s EOS
for water, and the isentropic one-fluid cavitation model �25�, re-
spectively. �g=1.4 is the ratio of specific heat for the gas, and
�o=1000 kg /m3 is the reference density. B, A, and �l are set equal
to 3.31�108 Pa, 105 Pa, and 7.0, respectively. K=�o / �1−�o� is a
parameter for the isentropic one-fluid cavitation model �25�,
where �o is the known void fraction of the mixture density at Pcav.
The value of K or �o indicates the pressure jump across the cavi-
tation interface, and K is adjusted dynamically using the method
presented in Ref. �25�. �g

cav and �l
cav are the associated gas and

liquid densities, respectively, at the cavitation pressure pcav. Fi-

nally, p̄= p+ B̄, p̄cav= pcav+ B̄, and B̄=B−A. It should be noted that
the nonlinear compressibility effects in water only become impor-
tant under extremely high pressure �higher than 10 GPa in general
according to Ref. �26��. For the problem solved in the current
work, the gas bubble has an initial pressure of 500 bars, which
falls out of the range where nonlinear compressibility effects are
significant. Hence, the bilinear EOS �27� can also be used instead
of the Tait’s EOS. Nevertheless, Tait’s EOS is valid within the
considered pressure range. It also has the advantage of being ap-
plicable for cases involving higher pressure where nonlinear com-
pressibility effects come into play.

The compressible Euler equations for the multiphase fluid are
solved using a finite difference method on a Eulerian framework
using a fixed Cartesian grid. The isentropic one-fluid cavitation
model �25� and the level set method �28� are used to track the
phase changes within the fluid and the location of the fluid-fluid
interfaces, respectively. A modified ghost fluid method �29� is
used to determine the fluid status of the fluid-fluid interface by
solving two nonlinear fluid characteristic equations using a double
shock approximate Riemann problem solver �ARPS�.

For a solid structure with negligible structural damping, the
governing equation of motion in matrix form can be written as

M�̈ + K� = F �8�

where M=�NT�sNdV and K=�BTCBdV are the solid mass and
stiffness matrices, respectively, with �s as the solid density, N as
the displacement interpolation matrix, and B as the strain-
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displacement matrix. �̈ and � are the Lagrangian solid acceleration
and displacement vectors, respectively. C is the elastic stiffness
matrix, which satisfies the stress-strain relationship �=C�el

=C��−�pl�. � is the Cauchy stress tensor. �, �el, and �pl are the
total logarithmic strain tensor, elastic logarithmic strain tensor,
and plastic logarithmic strain tensor, respectively. F=�NfdV
+�NhdA is the equivalent force vector. f and h are the body force
vector and boundary traction vector, respectively. In addition to
the elastic-viscoplastic material model used for the foam core
layer, the geometric nonlinearity option available in ABAQUS �30�
was also employed during the structural simulation to consider
finite deformation. It should be noted that the stiffness matrix K is
a function of the structural response due to geometric and material
nonlinearities. Hence, Eq. �8� also represents the generic nonlinear
form of the discrete finite element method �FEM� formulation.

The solid equation of motion and constitutive equations are
solved using the commercial finite element software, ABAQUS/

EXPLICIT �30� on a Lagrangian framework using a moving struc-
tured mesh. The one-way fluid characteristics equation is utilized:

dpI

dt
+ �ILcIL

duI

dt
= 0 �9�

pI is the interface pressure. uI and vI are the horizontal and verti-
cal components of the interface velocity. �IL and cIL are the den-
sity and speed of sound, respectively, of the shock wave on the
fluid side of the fluid-solid interface. A modified ghost fluid
method �MGFM� is used to treat the fluid-solid interface by solv-
ing the fluid characteristic equation �Eq. �9�� and the solid equa-
tion of motion �Eq. �8�� together to satisfy the pressure equilib-
rium �� ·n= pI, where n is the unit outward normal vector� and

kinematic compatibility conditions ��̇ ·ny =vI, where ny is the ver-
tical component of the normal vector�. The interface pressure ob-
tained from the characteristics equation �applied as normal surface
traction to the solid medium� is kept synchronous with the fluid
field leading to a strongly coupled Eulerian–Lagrangian scheme.
It is achieved by writing the multiphase compressible fluid solver
and the interface coupling algorithm as a user subroutine for

ABAQUS �30�, which adjusts the right hand side of the FEM for-
mulation at every computational step. Details of the fluid-solid
interface treatment are given in Refs. �23,24�.

The resulting strongly coupled Eulerian–Lagrangian solver is
able to capture nonlinear FSI involving strong shocks, gas bubble
dynamics, cavitation inception and collapse, and complex stress
and deformation fields of deformable composite structures. The
Eulerian–Lagrangian FSI solver has been validated using analyti-
cal, numerical, and experimental results for planar shock impact
on rigid and composite structures, as well as close-in underwater
explosion inside a deformable aluminum cylinder. The readers are
referred to Refs. �23,24� for details of the numerical model and
validation studies. For more details about ghost-fluid type method,
the readers are referred to Refs. �31–36�.

3 Results and Discussions

3.1 Simulated Cases. Five distinct configurations, four of
which are illustrated in Fig. 1, are simulated in the current work:

• Case 1: UNDEX near a stationary interface
• Case 2: UNDEX near a freely sliding rigid panel
• Case 3: UNDEX near a freely sliding steel panel
• Case 4: UNDEX near a freely sliding steel-foam-steel sand-

wich panel
• Case 5: UNDEX near a clamped-clamped steel-foam-steel

sandwich panel

The freely sliding rigid panel �case 2� has the same mass per
unit area as the freely sliding steel panel �case 3�. However, it
undergoes rigid body motion without any bending/stretching sub-
ject to UNDEX. Notice that case 5 is not shown in Fig. 1. Its
configuration is otherwise the same as case 4 with clamped ends.

As proposed in Ref. �7�, there exist three major effects or stages
that govern the mechanical response of sandwich structures sub-
ject to planar shock, namely, the one-dimensional momentum
transfer effect, the core compression effect, and the bending-
stretching effect. These effects are physically distinct but are tem-
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Fig. 1 Computational diagrams for the four different configurations „left top: sta-
tionary interface; right top: freely sliding rigid panel; left bottom: freely sliding
steel panel; right bottom: freely sliding steel-foam-steel panel…
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porally staggered. Order of magnitude difference in time scales
between these effects allows partially coupled treatment, such as
presented in Refs. �8–10,13,15,16�.

For UNDEX near sandwich structures, couplings between the
different effects become more complex. The bending/stretching
effect immediately initiates when UNDEX shock impinges on the
structure due to spatially nonuniform pressure distribution on the
wet surface; for the case of planar shock, the bending/stretching
effect initiates due to boundary constraints, which comes much
later. Formally, there exist four distinct effects which are govern-
ing the FSI during UNDEX near sandwich structures. The word
“effect” is chosen over “stage” because these effects are tempo-
rarily coupled due to 2D loading and response. These four differ-
ent effects can be calibrated as follows:

• difference between cases 1 and 2→Taylor’s FSI effect
• difference between cases 2 and 3→bending/stretching ef-

fect
• difference between cases 3 and 4→core compression effect
• difference between cases 4 and 5→boundary effect

Though it is difficult to find a clear-cut distinction between the
different effects, a formal division will provide metrics to assess
the relative importance of the different effects during UNDEX
near sandwich structures. The current work aims to identify to
what time and what degree various simplified partially decoupled
models are valid. Insights from the computational experiments
will shed light on the realistic design and analytical modeling
based on physical assumptions and simplifications.

For all the simulated configurations, the horizontal and vertical
dimensions of the fluid domain are taken to be 2.0 m and 1.3 m,
respectively. The initial high-pressure gas bubble is located at
0.5 m below the initial fluid-solid interface, with an initial radius
of 0.2 m and a pressure of 500 bars. The panel length is taken to
be 2.0 m. A thickness of 0.03 m is assumed for both the wet- and
dry-face steel panels. The thickness of the foam core layer is
assumed to be 0.15 m. The steel face panels have a density of
� f =8000 kg /m3, Young’s modulus of Ef =210 GPa, Poisson’s ra-
tio of � f =0.27, and yield strength of � f =900 MPa. No strain hard-
ening is considered for the steel panels. The core structure is as-
sumed to be made of the Alporas aluminum foam material �37�.
The quasistatic compressive stress-strain relation is calibrated
based on experimental data presented in Ref. �37�. It has a density
of �c=236 kg /m3, Young’s modulus of Ec=10 GPa, Poisson’s ra-
tio of �c=0.0, plateau yield strength of �c=1.5 MPa, and densifi-
cation strain of �c=0.8. An overstress viscoplastic model as in

Ref. �37� is adopted to account for the rate dependence of the core
material. The logarithmic plastic strain rate is calculated as �̇p

=max�0, ��−�c��p�� /	�, where the viscosity coefficient is taken
to be 	=1000 Pa s. Via extensive convergence study, a fluid grid
with 480�240 cells, a solid grid with 120�42 elements, and a
time step size of 0.5 
s for both the fluid and solid computations
are determined and consistently used in the following simulation.
Notice that C3D8R elements in ABAQUS �30� are adopted for the
solid simulation.

3.2 Taylor’s FSI Effect. Taylor’s FSI effect is illustrated in
Figs. 2 and 3. The pressure histories at the midspan of the wet face
�point P1 as in the left top drawing of Fig. 1� are compared in the
left drawing of Fig. 2 between case 1 �stationary interface� and
case 2 �free rigid face�. It can be seen that the Taylor’s FSI effect
leads to significant and consistent pressure drop at point P1. Four
pressure peaks can be identified for both cases. The first peak
corresponds to the incident primary shock impact. The following
peaks correspond to secondary shock impacts due to cavitation
collapse �at around t=0.8 ms� and shock-bubble interactions. The
peaks’ magnitude decreases with time due to energy dissipation.
The fluid starts to cavitate at point P1 around t=0.6 ms for the
case of free rigid face. The cavitation is formed due to the rarefac-
tion wave generated by the rigid body motion. The cavitation
collapses at around t=0.8 ms due to the high ambient pressure and
decrease in wet face velocity. The pressure profiles along the
fluid-solid interface at t=0.7 ms are plotted in the right drawing of
Fig. 2. Significant pressure drop due to Taylor’s FSI effect can be
clearly seen along the interface. The cavitation is not relevant for
the case of stationary interface since its reflected shocks does not
contain a rarefaction component. A large cavitation region near
the midspan can be found for the case of free rigid face. Two
additional small cavitation regions are formed at the interface
edges. The wet face pressure profiles are not uniform for both
cases due to the spherical pressure front from the UNDEX. The
fluid fields �pressure contours, velocity vectors, and bubble and
interface positions� at t=0.7 ms are presented in Fig. 3. Notice
that the original and expanded bubbles are denoted by dashed and
solid lines, respectively. Due to symmetry, only half of the domain
is shown. On the left is the case of the stationary interface and on
the right is the case of the free rigid face. A high-pressure front in
the shape of semicircle reflected back from the fluid-solid inter-
face can be identified for both cases. The case with the stationary
interface features a much higher pressure level and no cavitation
is observed. Consistent with the pressure plots in Fig. 2, two cavi-
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Fig. 2 Taylor’s FSI effect: comparison of the interface pressure between case 1 „stationary interface…
and case 2 „free rigid face… „left: pressure histories at P1; right: pressure profiles along the wet face
at t=0.7 ms…
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tation regions can be found for the case of free rigid face, with one
near the center and the other on the edge. For the case of station-
ary interface, the bubble is slightly compressed and is being
driven away. On the other hand, the bubble almost expands sym-
metrically for the case of free rigid face. Fluid is diverted away
from the central region near the interface for the case of stationary
interface, while fluid is rushing toward the structure to fill the void
created by the cavitation regions. For both cases, the field outside
the semicircle pressure front �reflected� remains identical since the
interface influence has not yet reached that region.

3.3 Bending/Stretching Effect. Bending/stretching effect is
illustrated in Figs. 4 and 5. The pressure histories at point P1 are
compared in the left drawing of Fig. 4 between case 2 �free rigid
face� and case 3 �free steel face�. It can be seen that the bending/
stretching effect leads to pressure decreasing at the initial stage
before cavitation inception. After cavitation collapse, the average

pressures are similar between these two cases, though the case
with the free rigid face features a larger pressure oscillation. For
both cases, the fluid starts to cavitate at around t=0.6 ms. The
cavitation collapses earlier for the case of free steel face arising
from shock focusing effect caused by larger deformation near the
midspan. The pressure profiles along the fluid-solid interface at t
=0.7 ms are plotted in the right drawing of Fig. 4. Three cavita-
tion regions �one large+two small� can be found for the case of
free rigid face as described before. There is only one cavitation
region for the case of free steel face �slightly larger than the case
of free rigid face�. For the case with the free steel face, pressure is
lower adjacent to the central cavitation region but higher at the
edges compared with the case of free rigid face. This is because
the central portion of the free steel face moves faster and the edge
portions move slower due to bending/stretching effect. The fluid
fields at t=0.7 ms are presented in the left and right drawings of

Fig. 3 Taylor’s FSI effect: comparison of the fluid field at t=0.7 ms between case 1
„stationary interface… and case 2 „free rigid face…
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Fig. 4 Bending/stretching effect: comparison of the interface pressure between case 2 „free rigid
face… and case 3 „free steel face… „left: pressure histories at P1; right: pressure profiles along the wet
face at t=0.7 ms…
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Fig. 5, respectively, for the case with the free rigid face and the
free steel face. The bubble size is slightly larger for the case with
the free steel face due to higher wet face flexibility in the central
region. The cavitation region is contracting near the center for the
case of free steel face, which will eventually lead to earlier col-
lapse, as can be seen from the pressure history in the left of Fig. 4.

3.4 Core Compression Effect. Core compression effect is il-
lustrated in Figs. 6 and 7. As shown in the left drawing of Fig. 6,
the core compression effect leads to consistent pressure rise at
point P1 due to the increase in resistance provided by the core.
Pressure peaks from shock-bubble interactions are no longer dis-
tinguishable except for the first peak after cavitation collapse. The
fluid starts to cavitate for both cases at around t=0.6 ms. The
cavitation duration is even shorter for the case of free sandwich.
The pressure profiles along the fluid-solid interface at t=1.5 ms

are plotted in the right drawing of Fig. 6. Due to core compression
effect, the pressure is consistently higher for the case of free sand-
wich along the interface. The fluid fields at t=1.5 ms are pre-
sented in Fig. 7. The interface retreats less significantly for the
case of free sandwich due to extra resistance provided by the core
structure, which leads to smaller bubble size and higher pressure
compared with the case of free steel face. The influence of inter-
face conditions has swept through the whole computational do-
main at t=1.5 ms. The symmetry between the left and right parts
of Fig. 7 has completely disappeared because the first reflected
shock from the fluid-solid interface has moved outside of the com-
putational domain.

3.5 Boundary Effect. Boundary effect is illustrated from
Figs. 8–10. Comparison of pressure histories is shown in Fig. 8.
For point P1 �midspan�, the pressure response is very similar for

Fig. 5 Bending/stretching effect: comparison of the fluid field at t=0.7 ms between case
2 „free rigid face… and case 3 „free steel face…
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Fig. 6 Core compression effect: comparison of the interface pressure between case 3 „free steel
face… and case 4 „free sandwich… „left: pressure histories at P1; right: pressure profiles along the wet
face at t=1.5 ms…
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both cases. However, for point P2 �quarter-span�, the case with the
clamped sandwich leads to higher pressure in general because the
fixed ends restrain the nearby structure from moving. This indi-
cates that the boundary effect is dominating over the peripheral
regions but not over the central region. To investigate structural
response characteristics, the maximum principle plastic strain
fields are plotted in Fig. 9. On the left is the case of free sandwich
and on the right is the case of clamped sandwich. Notice that the
vertical dimensions �the structure and its deformation� have been
magnified by four times to elucidate the relatively thin steel face
layers. The initiation and propagation of core yielding can be
clearly observed by examining different time frames from the top
to the bottom. Except near the boundaries, the plastic strain con-
tours are very similar between these two cases up to the time t
=1.5 ms. This indicates that before t=1.5 ms, the boundary ef-
fects are mainly restricted to regions close to the ends. At the later
stage �t=2.4 ms�, the influence of boundary effect has reached the

central portion. For the clamped sandwich, plastic regions start to
form near the ends of the wet steel face at t=1.5 ms and they
expand in the later stage �t=2.4 ms�, which lead to rotation near
the supports. The case of free sandwich is free of plastic regions
due to free boundary conditions. Benefited from shock absorption
and isolation of the foam core, the dry steel face consistently
remains elastic. Also plotted are the face velocity and core com-
pressive strain histories in Fig. 10 for point P1. As shown in the
left of Fig. 10, the wet and dry faces have reached a common
velocity at time t=2.4 ms for both cases. The wet face velocity
history is more stable for the free sandwich while more oscillating
for the clamped sandwich due to boundary effect. Velocity oscil-
lation originates from competition between the fluid pressure
loading and the structure restoration force. It indicates that the FSI
process is more violent for the clamped sandwich. As shown in
the right of Fig. 10, the compressive strain has reached a plateau

Fig. 7 Core compression effect: comparison of the fluid field at t=1.5 ms between case
3 „free steel face… and case 4 „free sandwich…
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Fig. 8 Boundary effect: comparison of the interface pressure between case 4 „free sandwich… and
case 5 „clamped sandwich… „left: pressure histories at P1; right: pressure histories at P2…
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due to face velocity equalization. A lower compressive strain
value has been reached for the clamped sandwich due to boundary
effect. Basically, the clamped boundary restrains the wet face steel
from running into the foam core structure.

3.6 Summary of Various Effects. Various effects have been
discussed previously in terms of pressure histories, pressure pro-
files, fluid field �pressure contours, velocity vectors, and bubble
and interface positions�, plastic regions, face velocities, and core
compressive strains. Qualitative trends have been identified. A
more global parameter is used in this section to summarize the
influence of various effects. The global parameter is chosen to be
the momentum transfer at the fluid-solid interface denoted by TM.
It is defined as TM ��t�Ap�A , t�dAdt, where A is the fluid-solid
interface area, t is the physical time, and p�A , t� is the spatially
and temporarily nonuniform pressure loading. The momentum
transfer difference between different simulated configurations pro-
vides a metric to evaluate the relative importance of different
effects. For example, the momentum transfer due to Taylor’s FSI
effect can be estimated as �TM =TM

2 −TM
1 , where the superscripts 1

and 2 denote case 1 �stationary interface� and case 2 �free rigid
face�, respectively. The momentum gauge �normalized momentum
transfer difference� can be defined as TG��TM /max�TM

5 �, where
max�TM

5 � denotes the value of momentum transfer for case 5
�clamped sandwich� at the end of computation, which is set at t
=2.4 ms.

The history of momentum gauges for various effects are shown
in Fig. 11. It can be seen that Taylor’s FSI effect is dominating

Fig. 9 Boundary effect: comparison of the maximum principle
plastic strain field between case 4 „free sandwich… and case 5
„clamped sandwich…. Notice that the vertical dimensions „the
structure and its deformation… have been magnified by four
times.
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Fig. 10 Comparison of face velocities and nominal core compressive strains between case 4 „free
sandwich… and case 5 „clamped sandwich… left: P1 „midspan…; right: P2 „quarter-span…
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over all other effects. It leads to significant reduction in shock
momentum transfer, which is the major source of shock mitigation
via light-weight sandwich structures. Its magnitude can be even
higher than the total momentum transfer to the clamped sandwich
structure in later stage �t�1.5 ms�. The bending/stretching effect
is small and oscillating. It can be neglected for all practical pur-
pose, for long slender panels. The core compression effect in-
creases the momentum transfer by providing extra resistance to
the wet face steel panel. It initiates later than the Taylor’s FSI
effect because it takes time for the core structure to deform and
then influence the momentum transfer at the wet face. Its magni-
tude can be as high as one-quarter of the total momentum transfer
to the clamped sandwich structure in the later stage. The boundary
effect also increases the momentum transfer by restraining the
structure motion near the end supports. It initiates much later than
the other effects since the structure motion starts from the central
portion and it takes time for the boundary conditions to take ef-
fect. Its magnitude is close to that of the core compression stage.

4 Conclusions
A previously developed 2D Eulerian-Lagrangian numerical

method is used to investigate the transient response of lightweight,
sandwich structures subject to UNDEX loading. The fluid is as-
sumed to be a multiphase compressible mixture where the effects
of thermal conductivity, viscosity, and surface tension are negli-
gible. It is solved using a finite difference method on an Eulerian
framework using a fixed Cartesian grid. An isentropic one-fluid
cavitation model and a level set method are used to track the
phase changes and the fluid-fluid boundaries, respectively, within
the fluid. A modified ghost fluid method is used to solve for the
fluid status at the fluid-fluid interfaces. The solid structure is as-
sumed to be a multilayer sandwich structure with steel faces and a
soft foam core. Perfect bonding is assumed between the layers. It
is solved using a finite element method on a Lagrangian frame-
work using a moving structured mesh. A modified ghost fluid
method is used to ensure satisfaction of the kinematic and dy-
namic boundary conditions at the fluid-solid interfaces.

The 2D Eulerian–Lagrangian method is used to analyze the
transient response of UNDEX near a stationary interface �case 1�,
freely sliding rigid face sheet �case 2�, freely sliding steel face
sheet �case 3�, freely sliding sandwich structure �case 4�, and
clamped sandwich structure �case 5�. Via carefully designed and
well controlled numerical experiments, the significance of differ-
ent coupling effects during underwater explosions near sandwich
panels are delineated. The difference between the five simulated
cases is used as a metric to evaluate the relative importance of
four different coupling effects, namely the Taylor’s FSI effect �dif-
ference between case 1 and case 2�, the bending/stretching effect
�difference between case 2 and case 3�, the core compression ef-
fect �difference between case 3 and case 4�, and the boundary
effect �difference between case 4 and case 5�. Results show that
simulations based on stationary interface significantly overesti-
mate the fluid pressure loading. The fluid-structure interaction ef-
fects can be utilized to reduce the shock momentum transfer to
sandwich structures during underwater explosions. Among all
these effects, the Taylor’s FSI effect is the most significant. The
bending/stretching effect oscillates with time, but it can be safely
neglected for long slender beams/panels. The core compression
effect and boundary effect increase the momentum transfer sig-
nificantly in the later stage. For the initial stage response of sand-
wich structures subject to UNDEX, inclusion of Taylor’s FSI ef-
fect will yield satisfactory results; for the later stage response, a
fully coupled modeling is required to accurately predict the mo-
mentum transfer and structure response.

The results demonstrated the importance of multidimensional
effects, fluid-structure interaction, shock-bubble interaction, and
nonlinear material behavior for UNDEX near a sandwich struc-
ture. In addition, the following insights can be drawn.

• The results can also be interpreted in another way. Basically,
the difference between case 1 and case 2 is due to FSI ef-
fects for a freely sliding rigid plate, between case 1 and case
3 is due to FSI effects for a freely sliding steel �deformable�
plate, between case 1 and case 4 is due to FSI effects for a
freely sliding sandwich plate, and between case 1 and case 5
is due to FSI effects for a clamped sandwich plate. In all
cases, neglecting FSI effects leads to significant overestima-
tion of the structural response by approximately a factor of
two or more.

• The fluid loading on the structure is different for a close-in
UNDEX compared to a planar shock due to the continual
loading caused by the shock-bubble interaction after the end
of the first Taylor’s FSI stage. Although the peak pressure
caused by the shock-bubble interaction is small compared to
the initial peak pressure, the duration is much longer, and
thus momentum transfer to the structure interface due to
shock-bubble interaction can be equal to or great than the
first FSI stage.

• 2D effects due to spherical wave propagations and the con-
tinual momentum transfer due to the shock-bubble interac-
tion cause the Taylor’s FSI effect, the bending/stretching
effect, the core compression effect, and boundary effect to
be tightly coupled, and cause the front and back faces to
continue to accelerate after all the layers near the midspan
portion reach a common velocity. The results also suggest
that for very high intensity UNDEX or very low strength
cores, slapping can occur in the midspan portion of the
panel, which can significantly change the dynamics due to
shock focusing effects caused by the large localized inter-
face deformation and subsequent shock-bubble interactions.

• The influence of cavitation collapse appears to be small
compared to shock-bubble interaction for the case consid-
ered.

• The results confirm previous findings �1,7� that lightweight
deformable composite structures are good candidates to re-
sist blast loads due to their ability to reduce the momentum
transfer via FSI.

• The immobile regions of a member, e.g., end supports, can
be subjected to very high stresses, which may in turn trans-
fer significant amount of the load to the supports and cause
failure of the structural system. Allowing the ends to de-
velop plastic hinges help to limit the maximum load transfer
to the supports and increases energy dissipation via plastic
deformation and FSI.

It should be noted that only the momentum gauge has been used
in the current work as a metric, which is directly related to FSI
effects at the fluid-solid interface. In the future work, other met-
rics should be investigated, such as the histories of maximum
stresses �von Mises stress for instance� and energy gaining �in-
cluding total work, plastic dissipation, and net energy�. Moreover,
parametric study warrants further investigation. It is worth con-
ducting similar analysis to determine the influence of varying
mass, thickness, and stiffness ratios between the steel plates and
the plastic core, on the various FSI effects.

Acknowledgment
The authors are grateful to the Office of Naval Research �ONR�

and Dr. Ki-Han Kim �program manager� for their financial support
through Grant Nos. N00014-05-1-0694, N00014-07-1-0491, and
N00014-08-1-0475.

References
�1� Taylor, G. I., 1963, “The Pressure and Impulse of Submarine Explosion Waves

on Plates,” The Scientific Papers of G. I. Taylor, Vol. 3, Cambridge University
Press, Cambridge, pp. 287–303.

�2� Kambouchev, N., Noels, L., and Radovitzky, R., 2006, “Nonlinear Compress-
ibility Effects in Fluid-Structure Interaction and Their Implications on the
Air-Blast Loading of Structures,” J. Appl. Phys., 100, p. 063519.

Journal of Applied Mechanics SEPTEMBER 2009, Vol. 76 / 051303-9

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�3� Kambouchev, N., Radovitzky, R., and Noels, L., 2007, “Fluid-Structure Inter-
action Effects in the Dynamic Response of Free-Standing Plates to Uniform
Shock Loading,” ASME J. Appl. Mech., 74, pp. 1042–1045.

�4� Liu, Z., and Young, Y. L., 2008, “Transient Response of Submerged Plates
Subject to Underwater Shock Loading: An Analytical Perspective,” ASME J.
Appl. Mech., 75, p. 044504.

�5� Xue, Z., and Hutchinson, J. W., 2003, “Preliminary Assessment of Sandwich
Plates Subject to Blast Loads,” Int. J. Mech. Sci., 45, pp. 687–705.

�6� Xue, Z., and Hutchinson, J. W., 2004, “A Comparative Study of Impulse-
Resistant Metal Sandwich Plates,” Int. J. Impact Eng., 30, pp. 1283–1305.

�7� Fleck, N. A., and Deshpande, V. S., 2004, “The Resistance of Clamped Sand-
wich Beams to Shock Loading,” ASME J. Appl. Mech., 71, pp. 386–401.

�8� Deshpande, V. S., and Fleck, N. A., 2005, “One-Dimensional Response of
Sandwich Plates to Underwater Shock Loading,” J. Mech. Phys. Solids, 53,
pp. 2347–2383.

�9� Hutchinson, J. W., and Xue, Z., 2005, “Metal Sandwich Plates Optimized for
Pressure Impulses,” Int. J. Mech. Sci., 47, pp. 545–569.

�10� Tilbrook, M. T., Deshpande, V. S., and Fleck, N. A., 2006, “The Impulsive
Response of Sandwich Beams: Analytical and Numerical Investigation of Re-
gimes of Behaviour,” J. Mech. Phys. Solids, 54, pp. 2242–2280.

�11� Espinosa, H. D., Lee, S., and Moldovan, N., 2006, “A Novel Fluid Structure
Interaction Experiment to Investigate Deformation of Structural Elements Sub-
jected to Impulsive Loading,” Exp. Mech., 46, pp. 805–824.

�12� Librescu, L., Oh, S. Y., and Hohe, J., 2006, “Dynamic Response of Anisotropic
Sandwich Flat Panels to Underwater and In-Air Explosions,” Int. J. Solids
Struct., 43, pp. 3794–3816.

�13� Liang, Y., Spuskanyuk, A. V., Flores, S. E., Hayhurst, D. R., Hutchinson, J. W.,
McMeeking, R. M., and Evans, A. G., 2007, “The Response of Metallic Sand-
wich Panels to Water Blast,” ASME J. Appl. Mech., 74, pp. 81–99.

�14� Rabczuk, T., Samaniego, E., and Belytschko, T., 2007, “Simplified Model for
Predicting Impulsive Loads on Submerged Structures to Account for Fluid-
Structure Interaction,” Int. J. Impact Eng., 34, pp. 163–177.

�15� McShane, G. J., Deshpande, V. S., and Fleck, N. A., 2007, “The Underwater
Blast Resistance of Metallic Sandwich Beams With Prismatic Lattice Cores,”
ASME J. Appl. Mech., 74, pp. 352–364.

�16� McMeeking, R. M., Spuskanyuk, A. V., He, M. Y., Deshpande, V. S., Fleck, N.
A., and Evans, A. G., 2008, “An Analytic Model for the Response to Water
Blast of Unsupported Metallic Sandwich Panels,” Int. J. Solids Struct., 45, pp.
478–496.

�17� Cole, R. H., 1965, Underwater Explosions, Dover, New York.
�18� Wardlaw, J. A. B., and Luton, J. A., 2000, “Fluid-Structure Interaction Mecha-

nisms for Close-In Explosions,” Shock Vib., 7, pp. 265–275.
�19� Mair, H. U., 1999, “Benchmarks for Submerged Structure Response to Under-

water Explosions,” Shock Vib., 6, pp. 169–181.
�20� Mouritz, A. P., Saunders, D. S., and Buckley, S., 1993, Fifth Australian Aero-

nautical Conference, Regent Hotel, Melbourne, Australia.

�21� Mourltz, A. P., 1996, “The Effect of Underwater Explosion Shock Loading on
the Flexural Properties of GRP Laminates,” Int. J. Impact Eng., 18, pp. 129–
139.

�22� McCoy, R. W., and Sun, C. T., 1997, “Fluid-Structure Interaction Analysis of
a Thick-Section Composite Cylinder Subjected to Underwater Blast Loading,”
Compos. Struct., 37, pp. 45–55.

�23� Liu, Z., Xie, W., and Young, Y. L., 2009, “Numerical Modeling of Complex
Interactions Between Underwater Shocks and Composite Structures,” Comput.
Mech., 43, pp. 239–251.

�24� Xie, W., Liu, Z., and Young, Y. L., 2009, “Application of a Coupled Eulerian-
Lagrangian Method to Simulate Interactions Between Deformable Composite
Structures and Compressible Multiphase Flow,” Int. J. Numer. Methods Eng.,
under review.

�25� Liu, T. G., Khoo, B. C., and Xie, W., 2004, “Isentropic One-Fluid Modelling
of Unsteady Cavitating Flow,” J. Comput. Phys., 201, pp. 80–108.

�26� Kambouchev, N., Noels, L., and Radovitzky, R., 2007, “Numerical Simulation
of the Fluid-Structure Interaction Between Air Blast Waves and Free-Standing
Plates,” Comput. Struct., 85, pp. 923–931.

�27� Xie, W., Young, Y. L., Liu, T. G., and Khoo, B. C., 2007, “A Smoothed Finite
Element Method for Mechanics Problems,” Compos. Mech., 40, pp. 667–681.

�28� Osher, S., and Sethian, J. A., 1988, “Fronts Propagating With Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J.
Comput. Phys., 79, pp. 12–49.

�29� Liu, T. G., Khoo, B. C., and Yeo, K. S., 2003, “Ghost Fluid Method for Strong
Shock Impacting on Material Interface,” J. Comput. Phys., 190, pp. 651–681.

�30� ABAQUS, 2005, Version 6.6 Documentation, ABAQUS, Inc., Pawtucket, RI.
�31� Cummings, J., Aivazis, M., Samtaney, R., Radovitzky, R., Mauch, S., and

Meiron, D., 2001, “A Virtual Test Facility for the Simulation of Dynamic
Response in Materials,” J. Supercomput., 23, pp. 39–50.

�32� Arienti, M., Hung, P., Morano, E., and Shepherd, J. E., 2003, “A Level Set
Approach to Eulerian-Lagrangian Coupling,” J. Comput. Phys., 185, pp. 213–
251.

�33� Tam, D., Radovitzky, R., and Samtaney, R., 2005, “An Algorithm for Model-
ling the Interaction of a Flexible Rod With a Two-dimensional High-Speed
Flow,” Int. J. Numer. Methods Eng., 64, pp. 1057–1077.

�34� Cirak, F., and Radovitzky, R., 2005, “A Lagrangian-Eulerian Shell-Fluid Cou-
pling Algorithm Based on Level Sets,” Comput. Struct., 88, pp. 491–498.

�35� Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L., Cummings, J. C., and
Meiron, D. I., 2006, “A Virtual Test Facility for the Efficient Simulation of
Solid Material Response Under Strong Shock and Detonation Wave Loading,”
Eng. Comput., 22, pp. 325–347.

�36� Cirak, F., Deiterding, R., and Mauch, S. P., 2007, “Large-Scale Fluid-Structure
Interaction Simulation of Viscoplastic and Fracturing Thin-Shells Subjected to
Shocks and Detonations,” Comput. Struct., 85, pp. 1049–1065.

�37� Deshpande, V. S., Heaver, A., and Fleck, N. A., 2006, “An Underwater Shock
Simulator,” Proc. R. Soc. London, Ser. A, 462, pp. 1021–1041.

051303-10 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Alireza Forghani

Reza Vaziri1

e-mail: reza.vaziri@ubc.ca

Department of Civil Engineering,
and Department of Materials Engineering,

Composites Group,
University of British Columbia,

6250 Applied Science Lane,
Vancouver, BC, V6T 1Z4, Canada

Computational Modeling of
Damage Development in
Composite Laminates Subjected
to Transverse Dynamic Loading
This paper presents a robust computational model for the response of composite lami-
nates to high intensity transverse dynamic loading emanating from local impact by a
projectile and distributed pressure pulse due to a blast. Delaminations are modeled using
a cohesive type tie-break interface introduced between sublaminates while intralaminar
damage mechanisms within the sublaminates are captured in a smeared manner using a
strain-softening plastic-damage model. In the latter case, a nonlocal regularization
scheme is used to address the spurious mesh dependency and mesh-orientation problems
that occur with all local strain-softening type constitutive models. The results for the
predicted damage patterns using the nonlocal approach are encouraging and qualita-
tively agree with the experimental observations. The predictive performance of the pro-
posed numerical model is assessed through comparisons with available instrumented
impact test results on a class of carbon-fiber reinforced polymer (CFRP) composite
laminates. Force-time histories and other derived cross-plots such as the force versus
projectile displacement and progression of projectile energy loss as a function of time are
compared with available experimental results to demonstrate the efficacy of the model in
capturing the details of the dynamic response. Another case study involving the blast
loading of CFRP composite laminates is used to further highlight the capability of the
proposed model in simulating the global structural response of composite laminates
subjected to distributed pressure pulses. �DOI: 10.1115/1.3129705�
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nonlocal damage model, cohesive crack model, explicit finite element analysis

1 Introduction
Large scale components made of advanced fiber reinforced

composite materials are increasingly being used as primary struc-
tural components in applications where weight saving and port-
ability are of critical concern. In many situations, these structures
are likely to be impacted by foreign object projectiles or blast-type
loading resulting in severe degradation of structural strength and
stiffness. Through development of various damage mechanisms
polymeric composite laminates offer desirable properties as pro-
tective type structures used to absorb energies released from blast
and impact type loadings. In order to design composite structures
that will survive such threats it is crucial to develop efficient and
reliable techniques to predict their response under a wide variety
of dynamic loading conditions.

Modeling the impact behavior of laminated composites has
been a subject of considerable interest to researchers in aerospace
and military applications for many years. As a result, a relatively
large body of literature has been accumulated. Many significant
research contributions, far too extensive to be mentioned here,
have been made to both analytical and numerical approaches to
impact modeling. However, despite the wealth of knowledge gen-
erated in computational techniques and constitutive modeling of
materials in general, the computer simulation of the impact behav-
ior of composite materials remains an elusive goal. The reason for
this is the relative inexperience in prediction of the damage be-

havior of composite materials as compared with the basically iso-
tropic and homogeneous metallic structures as well as a general
lack of detailed experimental data on the evolution of damage
during the course of impact loading.

From the failure mechanics standpoint, laminated composite
materials fall under the category of quasibrittle materials that ex-
hibit a strain-softening behavior marked by a progressive growth
of damage. Predicting the initiation and evolution of damage in
such structures is crucial and poses considerable challenges to the
structural analyst. In general, computational modeling of compos-
ite structures faces a number of obstacles because of their highly
anisotropic material behavior and multitude of damage mecha-
nisms. The complexity of the problem escalates when the applied
loads are of a dynamic nature such as those that occur during
impact and blast.

In this study, a computationally oriented structural model is
proposed, which is capable of simulating the two major modes of
failure in composite panels: The interlaminar damage �delamina-
tion� is modeled using the discrete cohesive crack concept �1�
while the intralaminar damage modes �matrix cracking and fiber
breakage� are treated in a smeared manner �2� using a strain-
softening plastic-damage model. The mesh size and orientation
sensitivity issues that plague all strain-softening based constitutive
models are addressed using a nonlocal regularization scheme. The
predictive capability of the proposed model in capturing the non-
linear dynamic response of composite structures will be demon-
strated by considering two case studies involving transverse dy-
namic loading of CFRPs plates. In the first case study, the
responses of CFRP laminates subjected to nonpenetrating impact
by projectiles with high mass �low velocity� or low mass �high
velocity� resulting in various levels of incident energies are con-
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sidered. The present numerical predictions are compared favor-
ably with previously measured experimental data in terms of the
impact force-time and force-displacement signatures as well as
energy dissipations decomposed into delamination and intralami-
nar mechanisms. The second case study deals with the simulation
of CFRP panels subjected to a blast-type pressure pulse for which
experimental data on the instantaneous back-face velocity of the
plate and postmortem damage patterns are available for model
validation.

2 Damage Modeling Framework
In quasibrittle materials such as many of today’s structural

composites, the size of the nonlinear process zone near the crack
tip is not negligible. To simulate the fracture and damage in such
materials at the macroscopic scale two distinct computational ap-
proaches, namely, discrete and continuum representations, have
been generally proposed. The cohesive crack method, which is
among the discrete techniques, has been used to model the inter-
laminar damage mode, i.e., delamination, and the generalized
smeared crack method, which falls under the realm of continuum
approaches, has been adopted to model intralaminar damage
modes, i.e., fiber breakage and matrix cracking. In some of the
modern computational analyses, e.g., Ref. �3�, both these ap-
proaches have been employed in tandem to model the degradation
of the ply interfaces due to delamination as well as the propaga-
tion of damage within the plies.

2.1 Cohesive Crack Method for Modeling Delamination.
The cohesive crack model is widely being used for modeling pro-
gressive crack growth in quasibrittle materials. This method is
based on the premise that damage is localized along a line �plane�
known as the fictitious crack �1� and the cohesive �closing� trac-
tion is applied on the crack surfaces to simulate the subsequent
resistance of the crack after its initiation. In the works of Camacho
and Ortiz �4� and Yu et al. �5� the cohesive crack is employed at
the interfaces of all elements to provide the possibility of crack
initiation and growth everywhere in the structure. Although in
these studies the cohesive crack model is used to simulate arbi-
trary cracks in the structure, this technique is typically adopted
when the position and direction of crack growth are known in
advance. In such cases, the cohesive interfaces can be placed
where the potential for crack initiation and growth exists.

Delamination is an inherently discrete mode of damage that can
be modeled effectively using the cohesive crack approach. Various
forms of the cohesive crack concept have been used in modeling
delamination, e.g., cohesive interface elements �Refs. �6�, �7�, �3�,
�8�, and �9� among others�, discrete cohesive failure models �e.g.,
Ref. �10��, and advanced partition of unity-based methods �e.g.,
Refs. �11,12��.

In dynamic problems, where the closure of delamination cracks
is likely during the event, the interface should be able to transfer
compressive loads, and thus in order to inhibit interpenetration of
adjacent layers, the cohesive crack model can be implemented
within the framework of penalty contact interfaces in finite ele-
ment codes.

2.2 Continuum Damage Mechanics Approach for Model-
ing Intralaminar Damage. Rather than modeling the fracture as
a discrete entity, a formidable computational task when there are a
multitude of fracture planes, one can represent fracture in a
smeared manner using continuum damage mechanics �CDM�
models. In this manner fracture can be assumed to be damage
propagating within a specific zone of a representative volume el-
ement �RVE� of the material resulting in a reduction in its stiffness
and an overall strain-softening constitutive behavior �i.e., stress
reduction with increasing strain�. Perhaps the best advantage of
this method is its ease of implementation in commercial finite
element codes.

The CDM technique attempts to predict the effect of micro-/
mesoscale defects and damage at the macrolevel. This effect is
usually modeled by reducing the material’s modulus.

� = Cd� �1�

where Cd is the degraded material stiffness tensor given by

Cd = R�d�C0 �2�

In Eq. �2�, R is the reduction tensor that is a function of the
damage state and C0 is the undamaged material stiffness tensor. d
is the damage parameter that represents degradation of the mate-
rial and is usually defined as a function of the state of strain,
stress, or energy potential. The value of the damage parameter
varies between 0 for a virgin, undamaged material and 1 for a
fully damaged material.

The challenge here is to define the damage state and the reduc-
tion tensor so that it can appropriately simulate the initiation and
growth of damage under different loading scenarios. The highly
anisotropic nature of composite materials combined with their
complex modes and sequence of failure processes makes it diffi-
cult to formulate a criterion that can signal the initiation of dam-
age and its progression under multi-axial stress �strain� states.

A popular approach in modeling intralaminar damage is the
so-called ply-based model, where a damage model is applied to
each individual ply of the laminate. In the work of Ladeveze et al.
�3�, a 2D damage model is proposed to simulate intralaminar dam-
age, where three damage parameters are defined to describe the
damage state within each ply. Maimi et al. �13,14� defined a dam-
age model based on the generalized crack band approach �1�
where the softening part of the constitutive relation is adjusted
according to the size �height� of the elements to maintain mesh-
insensitivity �or objectivity� of the numerical results.

The advantage of the ply-based approach is that it leads to a
convenient formulation of the damage model and since it uses ply
properties as its basis, the parameters can be measured using stan-
dard ply-based tests and in principle do not require recalibration
when the laminate lay-up is altered �13�. However, this approach
has two shortcomings: First, since each and every ply of the com-
posite laminate is simulated, the method is computationally inef-
ficient. Second, and perhaps more importantly, the ply-based
method is unable to represent the interactions that exist between
the plies in the nonlinear regime where initiation and evolution of
damage in a given ply are strongly influenced by its neighboring
plies. In other words, damage in each ply cannot be treated inde-
pendently of the laminate lay-up.

In the recent work by Williams et al. �2�, a composite damage
model �CODAM� has been proposed to capture the effect of ma-
trix cracking and fiber breakage on the macroscale. CODAM is a
phenomenological model that smears the material response
�stress-strain behavior� over a finite RVE of the laminate made up
of a repeating unit or a sublaminate through the thickness and a
characteristic size, hc, in the plane of the laminate. The construc-
tion of the model at this scale ensures that �1� by considering a
sublaminate the lamina interactions in terms of damage initiation
and evolution are implicitly taken into account, and �2� the char-
acteristic planar length provides a measure of the inherent tough-
ness �or brittleness� of the material �the larger the hc, the tougher
the material�. The latter introduces an inherent length scale that is
related to the size of the fully developed fracture process zone
�i.e., the height of the damage zone ahead of a crack in a test
configuration that leads to a stable crack growth�. In formulating
CODAM two sets of curves are defined: one relating the damage
variables to an effective strain, and the other relating the modulus
reduction to the damage variables. This results in a strain-
softening type stress-strain curve for the characteristic RVE. Dam-
age variables are defined for each of the principal orthotropic
directions as well as in shear loading, and the damage growth and
modulus reduction curves are unique in each case and sensitive to
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differences in tension and compression. The CODAM approach
has been designed to be computationally oriented, conceptually
simple, and easy to characterize.

Implementation of continuum damage models in finite element
codes takes the form of generalized smeared crack methods. This
approach encounters some numerical difficulties known as local-
ization, which is discussed in Sec. 3.

3 Nonlocal Approach

3.1 Localization Problem. It is widely acknowledged that the
finite element modeling of materials with strain-softening behav-
ior exhibits spurious mesh dependency problems due to the ill-
posedness of the governing equations. In such cases damage/crack
pattern tends to localize to the smallest length scale of the model,
which is the height of one element. Therefore, with successive
mesh refinement, damage localizes into a zone of zero volume and
the numerical results fail to converge to a unique solution. Con-
sequently, the global response of the system shows dependency on
the spatial discretization �15,16�.

To remedy this problem in a simple and computationally effec-
tive way, Bažant and co-workers �1,17� proposed the crack band
theory according to which the product of the area under the stress-
strain curve �in the softening regime� and the characteristic size of
the RVE represents the fracture energy �energy per unit area�, Gf.
This fracture energy is assumed to be a material constant. There-
fore, regardless of the choice of the mesh, which is a subjective
aspect of numerical analyses, the overall energy dissipation due to
damage and hence Gf must remain constant.

According to the crack band approach, damage localizes into a
zone that is one element in height. This requires one to know the
crack path a priori and design a conforming mesh. Also the crack
band method is applicable to cases where there is a distinct local-
ization of damage/crack into one row of elements, e.g., in quasi-
static loading of notched specimens. In very fast dynamic events
such as blast and impact where the damage takes a more spatially
distributed �diffuse� form and thus a well-defined path for the
crack propagation does not exist, the applicability of the crack
band concept becomes questionable �18�.

Other approaches have been proposed to regularize the numeri-
cal simulation of boundary-value problems with strain-softening
materials. These so-called localization limiter �19� methods intro-
duce a length scale to the equations on which the height of the
damage in the numerical simulation will depend. Nonlocal aver-
aging method �Refs. �20,21� among others�, explicit and implicit
gradient formulations �e.g., Ref. �22��, Cosserat continuum �e.g.,
Ref. �23��, and regularizations based on rate dependent and visco-
plastic models �e.g., Refs. �24,25�� are among the techniques that
render the numerical simulation results objective.

The averaging concept was first proposed as nonlocal con-
tinuum in elasticity �e.g., Ref. �26��. Since the mid-1980s this idea
has been implemented for strain-softening materials and used to
model damage and crack growth in quasibrittle materials
�1,15,18,20,27,28�.

3.2 Nonlocal Averaging Formulation. In the nonlocal ap-
proach, in contrast with the local methods, the state of stress at a
material point not only depends on the state of strain and history
parameters at that point but also on the state of neighboring
points. This approach is based on averaging of an appropriate state
parameter over a finite region using a weighting function.

According to the work of Jirasek �28�, the inelastic strain com-
ponent is an appropriate parameter for nonlocal averaging that
leads to realistic results and prevents stress locking. One can write
the averaging on the equivalent strain in the form

�̃eff�X� =
1

W�
V

�eff���w��X − ���d� �3�

where w is the weight function that depends on the distance be-
tween the original point and the target point. The integration is
carried out over a finite neighborhood, V, and W is the summation
of the weight function over the integral domain as follows:

W =�
V

w�r�dr �4�

Different weight functions are proposed for the averaging scheme
such as Gauss distribution function

w�r� = exp�−
r2

2l2� �5�

or bell-shaped power functions

w�r� = 	1 + � r

l
�p
−q

�6�

In Eq. �6�, the shape of the weight function can be altered by
adjusting the parameters p and q. In both Eqs. �5� and �6�, the
parameter l is a length scale that is incorporated in the formula-
tion. It should be noted that the height of damage depends on the
definition of the weight function as well as on the length param-
eter. Therefore the weight functions defined by Eqs. �5� and �6�
may lead to different solutions even with the same length
parameter.

The damage state is defined as a function of the nonlocal effec-
tive strain as follows:

d�X� = d��̃eff�X�� �7�

Another shortcoming of numerical simulations based on local
damage models is that they result in damage/crack patterns that
are dependent on the orientation of the mesh. This so-called mesh-
orientation bias of local models has been demonstrated and re-
ported elsewhere �e.g., Refs. �18,29�� in simulation of quasistatic
problems. Nonlocal methods have been shown to have the added
benefit of being effective in avoiding the unrealistic mesh-
orientation dependency of the damage propagation.

It is worth mentioning that computational implementation of
the nonlocal approaches is usually more complicated, and numeri-
cal analyses based on them are computationally more intensive
than local models. Furthermore, the nonlocal averaging method is
not a feature that is generally available in commercial finite ele-
ment codes. The notable exception is the explicit finite element
code LS-DYNA, in which this scheme has been implemented �30�
and can be applied to a selected number of its built-in material
models.

3.3 Calibration of Nonlocal Parameters. In addition to pa-
rameters that are required in local damage models, the key param-
eter in the nonlocal averaging method is the determination of an
appropriate length parameter �l in Eqs. �5� and �6��. This param-
eter plays an important role in nonlocal models since it influences
the height of the damaged area and consequently the energy ab-
sorbed in the damage process.

The overheight compact tension �OCT� test proposed by Kong-
shavn and Poursartip �31� is an effective experimental technique
that can be used to determine the nonlocal damage parameters.
This test is based on a modification of the standard compact ten-
sion �CT� test and generally leads to a stable growth of damage in
composite specimens. When combined with an image processing
technique that can track the local displacement and strain fields on
the surface of the OCT specimen, one can extract the height of the
damage zone, hc, and the energy release rate �fracture energy, Gf�
associated with the intralaminar damage mechanisms �29�.

Numerical simulation of the OCT test using a nonlocal model
can be carried out to determine the appropriate length parameter,
l, that results in accurate prediction of the height of the damage
zone, hc. The relation between the length scale and the height of
damage in the nonlocal model is governed by the form of the
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weight function, w. The length parameter should be adjusted so
that the height of damage predicted by the nonlocal model closely
matches the actual height of damage observed in the tests.

The energy dissipated in the damage process is another impor-
tant parameter that should be captured by the nonlocal model. The
energy release rate in a nonlocal model is a function of the length
parameter, l, as well as the energy release rate density, gf, that is
essentially the area under the stress-strain curve. Since l is ad-
justed according to the height of damage hc, the energy release
rate density gf should also be calibrated �scaled� to result in a
predicted global load-displacement curve that is consistent with
the experimental measurements.

It is worth noting that nonlocal regularization cannot be applied
appropriately to the ply-based damage models since the length
parameter employed in the nonlocal averaging scheme is a mea-
sure of the toughness �or brittleness� of the composite laminate.
The latter not only depends on the ply properties, but also on the
laminate lay-up. For the same reasoning, the nonlocal parameters
cannot be calibrated using ply-based tests. Therefore, for the pur-
poses of extracting the material damage parameters, the laminate
must be treated as a material in its own right and the test specimen
should be representative of the actual laminate configuration �lay-
up� that is going to be numerically simulated.

The test specimen used to extract the material parameters
should properly represent the damage/fracture behavior of the
laminate that is going to be numerically simulated.

4 Numerical Model
Owing to its proven computational capabilities and efficiencies

in handling contact/impact problems involving extremely nonlin-
ear material behavior, the numerical test-bed selected for this
study is the explicit finite element code LS-DYNA. In the structural
model proposed here, the laminated plate is divided into a number
of layers of shell elements each representing a sublaminate �or
repeating unit� that are then tied together by cohesive type inter-
faces as shown in Fig. 1. The shell elements used are the fully
integrated element �type 16 in LS-DYNA� with multiple through-
thickness integration points.

4.1 Intralaminar Damage Model. The intralaminar damage
is modeled by assigning strain-softening material models to the
shell elements. For comparative purposes two different constitu-
tive models are employed: one is based on the classical local
damage model and the other is a nonlocal damage model.

The CODAM �2� is a user-defined material model that has been
implemented in LS-DYNA. This model is based on the generalized
crack band concept and is essentially a local damage model that is
designed to predict the initiation and progressive growth of dam-
age in composite materials.

Nonlocal enhancement is provided in LS-DYNA software for a
limited number of its built-in material models. The nonlocal pa-
rameter can be chosen to be either the effective plastic �inelastic�
strain �in the form of von Mises effective strain� or damage pa-
rameter or both. As discussed in Sec. 3.2, the inelastic strain is a
more suitable parameter for nonlocal averaging compared with the
damage parameter, which suffers from stress locking problems.

The current nonlocal capability in LS-DYNA only supports scalar

damage models and therefore cannot be used for general aniso-
tropic damage models. Since the laminates of interest in this study
have quasi-isotropic lay-ups, this limitation is deemed to be
insignificant.

Among the built-in material models, the MAT_PLASTICITY-
_WITH_DAMAGE �MAT_81� model is considered to be a suit-
able choice as it allows for progressive damage modeling and the
use of effective strain as the nonlocal parameter. This material
model provides a combination of damage and plasticity. In a
monotonic loading scenario, as shown in Fig. 2, the model exhib-
its a strain-softening behavior.

The damage formulation is written based on strain equivalence
between the undamaged and damaged materials �32� according to

Aeff = A0�1 − d� �8�

� = �eff�1 − d� �9�

Cd = C0�1 − d� �10�

where Aeff is the effective undamaged area of the material and �eff
is the associated effective stress. The reduction multiplier �1−d� is
applied to both the ultimate stress �strength� and material stiffness.
The damage parameter d is defined by the user as a function of the
equivalent inelastic strain.

The behavior of this material model in a typical cyclic loading
under uniaxial stress conditions is shown in Fig. 2 where the
modulus degradation in unloading is evident but in contrast to the
classical elastic-damage models, the unloading does not follow a
secant path to the origin. As will be discussed in Sec. 5.1, the
combination of plasticity and damage proves to be a useful feature
of the model to help capture the residual deformation of compos-
ite plates under transverse impact loading. Note that in its local
form, and provided that similar input parameters are used, the
above material model results in a strain-softening curve that is
similar to that produced by CODAM. The notable exception is
that in CODAM, being an elastic damaging model, unloading re-
sults in stiffness degradation only while in MAT_81 it leads to a
combination of permanent strain and modulus reduction.

The LS-DYNA software uses the bell-shaped weight function
�Eq. �6�� for nonlocal averaging �33�. The recommended values of
p and q parameters in LS-DYNA are 8.0 and 2.0, respectively. This
averaging scheme is performed on the integration points lying on
the same plane.

4.2 Tie-Break Interface. The tie-break interface, which is
one of the built-in contact options available in LS-DYNA, is em-
ployed here to model delamination in composite plates. The inter-
face layers are initially tied together and then released after satis-
fying a certain mixed-mode traction-based criterion defined by

Sub-laminates
Tie-break contacts

Fig. 1 Schematic showing a stack of shell elements each rep-
resenting a sublaminate of the composite panel and connected
together using tie-break contact interfaces St

re
ss

Strain

Monotonic Loading

Cyclic Load-Unload

σu

εf
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ss

Strain

Monotonic Loading

Cyclic Load-Unload
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εf

Fig. 2 Typical stress-strain curves produced by the material
model MAT_81 in LS-DYNA under both monotonic loading and a
complete load-unload cycle resulting in damage saturation
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Eq. �11� �33�. The postpeak behavior of the cohesive contact is
governed by a bilinear softening traction-separation law as shown
in Fig. 3�a�. In situations where the closure of the delamination
crack compresses the interface, the interface behaves as a penalty-
based contact that prevents penetration of the contacting layers.

� �n

� fn
�2

+ � �s

� fs
�2

� 1 �11�

The behavior of the tie-break interface as a cohesive crack model
under quasistatic loading conditions was validated in Ref. �34�
where simulations of a double cantilever beam �DCB� were com-
pared with the benchmark problem studied by Alfano and Cr-
isfield �6�.

The tie-break interface is a penalty-based contact model, the
stiffness of which affects the behavior of the structure. This inter-
face is responsible for tying the layers of shell elements together
so that the stack of elements acts as an integrated plate. Using a
compliant penalty stiffness leads to sliding of the contacting layers
and hence a more compliant bending response of the structure.
Overly compliant penalty stiffness can also result in a so-called
snap-back in the cohesive model as shown in Fig. 3. The snap-
back leads to a sudden release of the tie, which introduces an
undesirable jittery �noisy� response in the explicit finite element
simulation. Snap-back also causes convergence problems in im-
plicit finite element simulations that can be avoided by appropri-
ate incorporation of fictitious viscosity in the interface model �see
Ref. �35�, for example�. From the fracture mechanics viewpoint,
when snap-back occurs, the absorbed energy in the crack opening
process deviates from the prescribed energy release rate Gc. This
is shown schematically in Fig. 3�b�, where the solid line corre-
sponds to the actual traction-separation behavior, and as shown,
the area under this curve, which is the energy absorbed in the
opening process per unit area, exceeds the prescribed energy re-
lease rate Gc.

A very stiff contact on the other hand leads to stress concentra-
tion and formation of premature delamination sites. It also intro-
duces high frequency modes in the structural response that lead to
a reduction in the time step size �for numerical stability of explicit
solvers� and hence an increase in the computational run-time.
Therefore, the contact interface stiffness needs to be optimized in
order to obtain a realistic structural response while avoiding com-
putational difficulties.

5 Simulations of Dynamic Response of Composite
Plates

5.1 Case Study 1: Transverse Impact by Projectiles. The
case study used here to validate the predictive capability of the
proposed computational model involves the analysis of the non-
penetrating impact response of T800/3900-2 CFRP laminates with
quasi-isotropic stacking sequence of �45 /90 /−45 /0�3S. The stan-
dard Boeing compression after impact �CAI� test geometry that
was used in the impact tests is shown in Fig. 4. The impact tests

were conducted by Delfosse et al. �36� and covered a wide range
of incident energies consisting of both high-mass �drop-weight�
and low-mass �gas gun� tests.

5.1.1 Description of the Tests. The target geometry was a plate
with dimensions 152.4�101.6�2.69 mm3 clamped onto an alu-
minum backing plate with a 76.2�127.0 mm2 rectangular open-
ing. The indenter �projectile� was a 25.4 mm diameter hemispheri-
cal shaped hardened steel as shown in Fig. 4. The low velocity
impact tests, with velocities ranging from 1.76 m/s to 4.29 m/s,
were performed using the drop-weight tower, which had a mass of
6.33 kg. A gas gun, which launched a 0.314 kg projectile, was
employed to perform the high velocity tests with striking veloci-
ties ranging from 7.74 m/s to 23.19 m/s.

5.1.2 Material Characterization. The lamina elastic properties
of the T800H/3900-2 CFRP and the effective sublaminate proper-
ties are listed in Table 1. Damage and failure-related properties of
the quasi-isotropic sublaminate are listed in Table 2.

In keeping with the crack band scaling law for maintaining a
constant fracture energy release rate G, the strain-to-failure �dam-
age saturation strain � f� in the local damage model is scaled de-
pending on the size of the element used in the mesh.

The length scale l in the nonlocal model is chosen to be equal to
2 mm. This results in a damage height hc�4–5 mm �in a quasi-
static test like OCT�, which is reasonable for this class of material
�2,31�. The strain-to-failure in the nonlocal material model was
adjusted to attain reasonable values of the global energy absorp-
tion in the damage process. This can be achieved by obtaining a
good correlation between the predicted and measured load-

Gc

σf

δc

σ

δ δc

σf

σ

δ(b)(a)

Fig. 3 Typical traction-separation curves with „a… high initial
stiffness and „b… low initial stiffness causing a local snap-back
behavior

Vi

Rubber
clamps

Hardened Steel
Hemispherical
Indentor
Ø 25.4mm

76.2mm x 127.0mm

101.6mm x 152.4mm

Composite
Target Panel

Aluminum
Test Frame

Fig. 4 Setup of the impact tests †36‡

Table 1 Physical and in-plane elastic properties for the T800/
3900-2 CFRP †2‡

Parameter Value Units

Lamina
Density ��� 1543 kg /m3

Longitudinal modulus �E1� 129.1 GPa
Transverse modulus �E2� 7.45 GPa
Shear modulus �G12� 3.25 GPa
Major Poisson’s ratio ��12� 0.33
Thickness of the ply �tply� 0.194 mm

Sublaminate �45 /90 /−45 /0�
Density ��� 1543 kg /m3

Effective principal modulus �Ex� 48.37 GPa
Effective principal modulus �Ey� 48.37 GPa
Effective shear modulus �Gxy� 18.36 GPa
Effective Poisson’s ratio ��xy� 0.32
Thickness of the sublaminate �tsublam� 0.775 mm
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displacement curves in an OCT test. The parameters used in in-
tralaminar and interlaminar damage models are listed in Table 3.

5.1.3 Structural Model. From a computational efficiency
viewpoint, it is practically impossible to introduce delamination
interfaces between all the layers. A prior knowledge about the
behavior of the structure would help to identify potential delami-
nation sites where cohesive interfaces can be planted. In the cur-
rent case study, where the plate is subjected to an out-of-plane
local impact loading, the transverse shear stresses are the major
cause of delamination with the critical values of these stresses
occurring at the midplane. Therefore, in the structural model used
in this study, the laminate is modeled as two identical layers of
shell elements tied together using the tie-break interface.

The boundary conditions are simplified with roller supports on
the edges of the panel as shown schematically in Fig. 5.

To study the effect of spatial discretization on the predictions,
two different mesh sizes have been used in the numerical simula-
tions. The coarse and fine meshes consist of square elements of
sizes 2 mm and 1 mm, respectively. The metal indenter is simu-
lated as a spherical rigid object with a prescribed initial velocity.

5.1.4 Results

5.1.4.1 Damage pattern: Local versus nonlocal. To examine
the sensitivity of the finite elements �FE� predictions to the orien-
tation of the elements, a skewed mesh with 45 deg inclination of
elements has been generated. The regular structured mesh and the
skewed mesh have been used to study mesh-orientation depen-
dency of the damage pattern. Figures 6�a� and 6�b� show the
intralaminar damage patterns predicted with the regular mesh us-
ing the local and nonlocal damage models, respectively, while
Figs. 6�c� and 6�d� show the corresponding damage patterns ob-
tained with the inclined mesh.

It can be clearly seen from these figures that in the FE simula-
tions based on the local version of the damage model the damage/
crack tends to grow parallel to the orientation of the elements.
This is due to the fact that the predicted local stresses/strains are
not accurate enough and a criterion based on these parameters
leads to mesh-dependent results. Since the damage is localized in
one row of elements, the size of damage zone depends on the size
of elements.

On the other hand, the nonlocal averaging reduces the effect of
inaccurate local distributions of strain/stress and leads to a more
reasonable prediction of damage propagation while alleviating the
mesh size and orientation dependency problems.

Having demonstrated the benefits of a nonlocal approach to
modeling damage development from a qualitative standpoint, in
the following we will explore the validity of the nonlocal damage
model predictions quantitatively by comparing the numerical re-
sults with the measured experimental data.

5.1.4.2 Time history of the contact force. Figure 7 shows two
examples of the predicted impact force-time history in �a� low
velocity–high-mass and �b� high velocity–low-mass dynamic
events, both of which correspond to fairly high incident energies
that impart significant damage to the CFRP panel. In these figures
the predicted response based on both coarse and fine meshes has
been compared with the experimental measurements by Delfosse
et al. �36�. It can be seen that the predictions agree with the ex-
periments in terms of peak force and duration of the event, which
serves as a measure of the model performance in capturing the
global response to impact. The agreement at the early stages of
loading shows that the elastic behavior of the system is well cap-
tured by the numerical model while the agreement during the
unloading stage is indicative of how well the response of the
damaged system has been simulated.

Table 2 Damage-related material properties for †45/90/
−45/0‡ sublaminate of T800/3900-2 CFRP

Parameter Value Units

Intralaminar energy release rate �Gf�
a 55.6 kJ /m2

Mode I interlaminar fracture toughness �GIc�
b 0.8 kJ /m2

Mode II interlaminar fracture toughness �GIIc�
b 2.0 kJ /m2

aReference �2�.
bReference �37�.

Table 3 Material model parameters used in numerical simula-
tions of T800/3900-2 CFRP laminate

Parameter Value Units

Intralaminar peak stress ��u� a 760 MPa
Saturation strain of local model—coarse mesh �� f� 0.074
Saturation strain of local model—fine mesh �� f� 0.148
Saturation strain of the nonlocal model �� f� 0.037
Mode I delamination initiation stress �� fn� a 80 MPa
Mode II delamination initiation stress �� fs� 150b MPa
Delamination critical opening displacement ��c� 0.025b mm

aReference �2�.
bThe material parameters that are available from tests are the energy release rates for
modes I and II of delamination �GIc and GIIc� and the transverse tensile strength of
the matrix material used as the initiation stress for mode I delamination, � fn. The
parameters �c and � fs are computed such that the effective energy release rates for
modes I and II used in the simulations are consistent with the measured values of GIc
and GIIc.

Fig. 5 Schematic showing the structural model consisting of
the spherical indenter and the target panel constrained at its
edges by frictionless simple supports

(a) (b)

(c) (d)

Fig. 6 The predicted damage pattern at the center of the im-
pacted composite panel using „a… local and „b… nonlocal dam-
age models on a regular structured mesh; and „c… local and „d…
nonlocal damage models on an inclined mesh

051304-6 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5.1.4.3 Load-displacement curves. The impact load-deforma-
tion plots corresponding to the two cases considered above are
shown in Fig. 8. It can be seen that the numerical simulations
reasonably predict the trend of the behavior as well as the peak
force and the maximum displacement.

The nonlinear unloading curve, as well as the residual deforma-
tion, is seen to be well predicted with the combination of the
intralaminar plastic-damage model and the interlaminar cohesive
tie-break interface model. This is an improvement over the previ-
ous elastic-damage model by Williams et al. �2�, which led to a
linear unloading path back to the origin with no residual deforma-
tion.

5.1.4.4 Energy absorbed by the plate. Figures 9�a� and 9�b�
show the loss of the kinetic energy by the projectile during the

course of the two impact events considered above. Since the en-
ergy dissipated in damping is negligible in this structural model,
the residual energy loss of the projectile �the plateau value in each
graph� is a measure of the energy absorbed by the structure due to
the damage development �both interlaminar and intralaminar�. Re-
sults obtained with fine and coarse meshes are shown in these
graphs and both show reasonable agreement with the experimental
data.

5.1.4.5 Partitioning of energy. The predicted partitioning of
the absorbed energy of the target versus the incident impact en-
ergy are shown in Figs. 10�a� and 10�b� for a range of high-mass–
low velocity and low-mass–high velocity impact events, respec-
tively. The experimentally measured values of the projectile
energy loss �38� are also shown on these plots to facilitate com-
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Fig. 7 Comparison between the measured and predicted impact forces versus time relationships in a „a… low velocity–
high-mass „v=4.29 m/s, E=58.2 J… and a „b… high velocity–low-mass „v=23.19 m/s, E=84.4 J… impact event
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Fig. 8 Comparison between the measured and predicted impact forces versus plate deflection in a „a… low velocity–
high-mass „v=4.29 m/s, E=58.2 J… and a „b… high velocity–low-mass „v=23.19 m/s, E=84.4 J… impact event
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Fig. 9 Comparison between the measured and predicted histories of the projectile energy loss for a „a… low velocity–
high-mass „v=4.29 m/s, E=58.2 J… and a „b… high velocity–low-mass „v=23.19 m/s, E=84.4 J… impact event
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parison with the numerically predicted values of the total energy
absorbed by the CFRP plates. The latter can be decomposed into
the energy absorbed in intralaminar and interlaminar damage pro-
cesses, the values of which are listed in Tables 4 and 5 for the low
and high velocity cases, respectively.

5.2 Case Study 2: Blast Loading.2 The objective of this case
study is to validate the performance of the proposed structural
model in an intense dynamic event resulting from a blast load.
The focus in this section is on delamination and the transient
structural response.

5.2.1 Description of the Test. Explosive loading trials were
conducted at the Canadian Department of National Defense
�DRDC-Valcartier� �34� on IM7/8552 CFRP composite plates
with quasi-isotropic lay-ups: �90 /45 /−45 /0 /0 /−45 /45 /90�8 �thin
plates� and �90 /45 /−45 /0 /0 /−45 /45 /90�12 �thick plates�. The di-
mensions of the panels were approximately 610�305 mm2 with
thicknesses of 12 mm and 18 mm for thin and thick plates, re-

spectively. The test setup is shown schematically in Fig. 11. The
composite test plate was held loosely between removable steel
cylinders, allowing it to slide freely as the plate bends due to the
blast impulse. The trials consisted of explosively loading the
plates with a 50 g C4 explosive at a stand-off distance of 140 mm.

2The results of this case study were presented at the 16th International Conference
on Composite Materials in Kyoto, Japan �ICCM 16�, 2007.

Table 4 Predicted dissipated damage energy and its breakdown into interlaminar and in-
tralaminar components for the low velocity–high-mass impact cases. The values in parenthe-
ses are energies in joules.

Velocity
�m/s�

Measured
projectile

energy loss �J�

Predicted
energy loss

in damage �J�

Predicted energy loss �% of impact energy�

Total damage Intralaminar damage Interlaminar damage

1.76�9.5� 2.1 1.6 16 12 4
3.3�34.5� 19 16.5 47 32 16
3.82�46.2� 30 26.2 56 34 23
4.29�58.2� 41 38 65 42 22

Table 5 Predicted dissipated damage energy and its breakdown into interlaminar and in-
tralaminar components for the high velocity–low-mass impact cases. The values in parenthe-
ses are energies in joules.

Velocity
�m/s�

Measured
projectile

energy loss �J�

Predicted
energy loss

in damage �J�

Predicted energy loss �% of impact energy�

Total damage Intralaminar damage Interlaminar damage

7.74�9.4� 2.1 2.0 21 10 11
11.84�22.0� 7.9 9.5 43 34 9
14.59�33.4� 16.2 20.2 59 30 29
18.97�56.5� 32.5 33.9 60 30 30
23.19�84.4� 62.3 59.4 70 43 28
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Fig. 10 Predicted energy absorbed in the damage process and measured energy loss in various „a… low velocity–high-
mass and „b… high velocity–low-mass impact events
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Fig. 11 Schematic of the test setup used for blast loading
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The back-face velocity of the plate was recorded by measuring the
velocity of an aluminum cylinder that was placed on top of the
composite plate as shown.

5.2.2 Material Characterization. The effective material prop-
erties for the quasi-isotropic �90 /45 /−45 /0 /0 /−45 /45 /90� sub-
laminate are listed in Table 6.

5.2.3 Numerical Model. The structural model in this case is
similar to the one used in the previous impact simulations. In
order to address the effect of through-thickness discretization on
the predicted response of the structure, the plate is modeled by
stacking different numbers of shell elements �one, four, and eight
layers� connected by the tie-break interface. The pressure-time
pulse generated by the blast load is simulated using the conven-
tional weapons effects �CONWEP� model �33�. The histories of
blast pressure generated by CONWEP at different locations of the
plate are shown in Fig. 12. The delay in the pressure-time graphs
reflects the time taken for the blast wave to arrive at the plate
surface after the explosive is set off.

5.2.4 Results

5.2.4.1 Dependency of the response on number of tie-break
interface layers. As discussed previously, the tie-break contact is
based on the penalty method and its stiffness may affect the dy-
namic characteristics of the structure. The goal here is to adjust
the properties of the contact to render the structural response in-
dependent of the number of sublaminates and position of the tie-
break contacts. The LS-DYNA software automatically calculates the
penalty stiffness based on dynamic characteristics of the structure.
This parameter can be scaled by the user; however, the default
value of the penalty scale factor is 0.1 �33�.

In this section the response of the thick plate using three differ-
ent through-thickness discretizations, namely, one, four, and eight
layers of shell elements, is studied. The analysis is performed both
using the default value of the contact stiffness scale factor, i.e.,
0.1, and a modified scale factor equal to 2.0. To conform to the
experiments, a virtual aluminum cylinder is placed on the distal
face of the plate to monitor its back-face velocity.

Table 7 shows the values of the back-face velocity of the plate
�vb� and the velocity of the aluminum cylinder �va� while using
the default and modified contact stiffnesses. It can be seen that
with the default contact stiffness, the results are not objective. In
this case the values of vb and va both depend on the number of
layers used in the structural model. This is due to the fact that the
interfacial tie is not stiff enough to ensure that the layers move
together as a unit. Thus, the momentum transferred from the blast
load is not carried by the whole laminate; rather it is carried by
one or some of the layers at any given time. Given that each layer
or sublaminate is thinner �and hence lighter� than the entire lami-
nate, the back-face velocities are generally overpredicted and
strongly depend on the number of shell layers �sublaminates�.

The above can be addressed by appropriate scaling of the initial
contact stiffness as shown in the right hand columns of Table 7. It

Table 6 Material properties of †90/45/−45/0/0/−45/45/90‡
IM7/8552 CFRP sublaminate †34‡

Parameter Value Units

In-plane elastic modulus �Ex and Ey� 61.6 GPa
Shear modulus �Gxy� 23.0 GPa
Poisson’s ratio �vxy� 0.32
In-plane failure stress ��u� 550 MPa
Initiation stress for delamination �� fn� 50 MPa
Delamination’s critical opening displacement ��c� 0.012 mm

0

10

20

30

40

50

60

70

80

0 0.05 0.1 0.15 0.2 0.25

time (msec)

Pr
es
su
re
(M
Pa
)

r=0 mm r=80 mm r=160 mm

Fig. 12 Pressure-time pulse generated by the CONWEP model at differ-
ent locations on the plate „radial distances r from the center… corre-
sponding to a charge of 50 g C4 at a stand-off distance of 140 mm

Table 7 Predicted back-face velocity and velocity of the aluminum cylinder using default val-
ues of contact stiffness and modified contact stiffness

No. of layers

Contact properties Default contact stiffness Modified contact stiffness

� f
�MPa�

�c
�mm�

Gc
�kJ /m2�

vb
�m/s�

va
�m/s�

vb
�m/s�

va
�m/s�

1 ------- ------- ------- 45 45 45 45
4 50 0.1 2.5 65 60 50 46
4 50 0.01 0.25 65 60 49 46
8 50 0.1 2.5 90 72 52 47
8 50 0.01 0.25 92 72 52 47
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can be seen that with this modification the results have improved
significantly and the velocities are almost invariant with the num-
ber of layers. Also it can be seen from the table that the maximum
back-face velocity and velocity of the aluminum cylinder are in-
dependent of the strength of the cohesive model �in terms of en-
ergy release rate Gc�. This is because the maximum velocity oc-
curs during the first phase of the response when none of the
interfacial ties are loaded in tension.

It is worth noting that the average measured velocity was about
62 m/s �34� while the predicted velocity of the aluminum cylinder
is about 46 m/s as shown in Table 7. Therefore, the numerical
simulation underestimates the back-face velocity. The accuracy of
the CONWEP blast model in this case where the stand-off dis-
tance is only 140 mm is questionable, and this underestimation of
the blast load may be the main reason for the predicted velocities
being less than the measured data.

5.2.4.2 Damage pattern. The images in Fig. 13 show the pre-
dicted pattern of damage/crack on the one-layer model using the
local damage model �Fig. 13�a�� and the nonlocal enhancement
�Fig. 13�b��. It can be seen that the damage pattern and crack path
in the classical smeared crack method are biased with respect to
orientation of the mesh whereas the nonlocal regularization results
in a much more realistic damage pattern.

5.2.4.3 Evaluation of the response of the structure. The eight-
layer structural model is employed here to evaluate the response
of the thin composite plate to the blast load. Figure 14�a� shows
the time history of the transverse displacement at the center of
each layer �sublaminate� underneath the aluminum cylinder. Layer
1 is the first sublaminate located at the bottom of the plate �impact
face� and layer 8 is the last sublaminate at the top of the plate
�distal face�. The lack of overlap between the displacements of the
sublaminates above and below the midplane is indicative of a
major delamination occurring at the midplane of the plate. This
agrees well with the experimental observations �34�.

The structural response can be decomposed into three phases,
as shown in Fig. 14�b�. The first phase starts when the blast load
strikes the plate and loading continues for about 40 	s. In this
phase, the response of the structure is governed by the balance of
momentum induced by the blast load. Therefore, the velocity of
the system depends mainly on the blast impulse as well as on the
thickness and density of the plate. At the end of this first phase
and at the maximum velocity of the plate, the aluminum cylinder
detaches from the back-face of the plate. Thus, the velocity of the
aluminum cylinder and maximum back-face velocity of the plate
are mainly driven by the impulse content of the blast load and the
plate thickness and density.

The second phase starts about 50 	s after the blast hits the
plate. In this phase, due to the deformation of the plate, strains and
consequently stresses develop and the structure starts to resist the
load. According to Fig. 14�b�, the velocity reduces and therefore
during this phase the acceleration at the center of the plate is
negative. To resist the blast load, a significant punching shear

develops, which leads to delamination of the layers. Since the
maximum transverse shear stress occurs at the midplane of the
plate, that is the site where a major delamination occurs.

The third phase starts about 300 	s after the blast initiation at
which point in time the blast load duration has terminated and the
structure responds in a free vibration mode. Due to the delamina-
tions that had developed earlier, the layers are no longer con-
strained by their neighbors and the response is generally more
compliant with lower frequencies than the intact plate. In this
phase, delaminations may grow further due to local tensile or
shear tractions between the layers.

6 Conclusions
A computational model for predicting the response of compos-

ite laminates subjected to out-of-plane dynamic loading has been
presented. The explicit commercial finite element code LS-DYNA

has been used as the numerical test-bed.
The intralaminar damage mechanisms consisting of fiber break-

age and matrix cracking are captured using a continuum-based
plastic-damage model applied at the sublaminate level. This level
of resolution, which considers a stack of layers representing a
repeating unit of the laminate, is deemed to be a physically real-
istic RVE at the macroscopic scale that can implicitly account for
the damage interactions among the various layers. The sublami-
nate level for damage modeling introduces an inherent length
scale that is unique to the particular laminate being considered.
This length scale affects the size of the fracture process zone in a
loading geometry of the laminate that results in a stable crack
growth. A nonlocal regularization scheme is used to address the
spurious mesh dependency and mesh-orientation problems associ-
ated with local strain-softening models. In dynamic loading events
where the damage takes on a dispersed and random pattern, rather
than being localized in a well-defined band, the nonlocal approach
becomes a more effective method for smeared damage modeling.

Delaminations are modeled using a cohesive type tie-break in-
terface introduced between the shell layers that represent the su-
blaminates. The tie-break interface uses the penalty stiffness
method, which introduces an inherent finite stiffness between the

(a) (b)

Fig. 13 Predicted damage pattern in the composite plate un-
der blast load using a „a… local and a „b… nonlocal material
model
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Fig. 14 Predicted time histories of the out-of-plane „a… dis-
placement and „b… velocity of the various layers at the center of
the plate

051304-10 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tied layers. The value of this stiffness can significantly affect the
dynamic structural response of the laminate and has to be judi-
ciously selected to allow the laminate to act as an integral plate
while maintaining a reasonable computational time step size.
Overly compliant tie-break stiffnesses can lead to potential snap-
back problems �depending on the value of the interlaminar energy
release rate� while overly stiff values can be computationally tax-
ing.

Both the interlaminar and intralaminar damage models used in
this study draw on physically realistic and justifiable parameters
for their calibration. These parameters are free from empiricism
and have been gathered from the available literature data for the
material systems used in the current study.

The predictive performance of the proposed methodology is
validated using two numerical case studies carried out on CFRP
plates: one involving the transverse impact loading by low- and
high-mass projectiles covering a range of impact energies and the
other involving dynamic pressure loading applied to the plates as
a result of an explosive charge being set off. The predicted dam-
age patterns using the nonlocal smearing approach are shown to
be numerically objective and representative of the observed dam-
age propagations. The combination of the cohesive interface
model �for interlaminar behavior� and nonlocal plastic-damage
model �for intralaminar behavior� is found to be quite effective in
simulating the details of the force-time histories and force-
displacement signatures of the projectile during the impact events.
The real test of the capability of a model lies in its ability to
predict the unloading response of the plates as it reveals the re-
sidual structural stiffness and displacement. The former is affected
by the material stiffness degradations due to damage evolution as
well as the global structural stiffness reduction due to delamina-
tions, while the latter is the result of permanent deformations in
the fracture processes. Through comparisons with the available
experimental measurements, it is shown that the current structural
model captures such intricate details of the dynamic response rea-
sonably well.

The methodology presented in this paper is a promising step
forward in the quest for a robust computational tool that can be
used to analyze and design composite structures that can be either
damage tolerant in service or expected to survive the intense dy-
namic loading conditions due to blast and impact.
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The Influence of Material
Properties and Confinement on
the Dynamic Penetration of
Alumina by Hard Spheres
The ability of a ceramic to resist penetration by projectiles depends, in a coupled manner,
on its confinement and its mechanical properties. In order to explore the fundamental
inter-relationships, a simulation protocol is required that permits the microstructure and
normative properties (hardness and toughness) to be used as input parameters. Potential
for attaining this goal has been provided by a recent constitutive model, devised by
Deshpande and Evans (DE) [2008, “Inelastic Deformation and Energy Dissipation in
Ceramics: A Mechanics-Based Dynamic Constitutive Model,” J. Mech. Phys. Solids, 56,
pp. 3077–3100] that incorporates the contributions to the inelastic strain from both
plasticity and microcracking. Before implementing the DE model, various comparisons
with experimental measurements are required. Previously, the model has been success-
fully used to predict the quasistatic penetration of alumina by hard spheres. In the present
assessment, simulations of the dynamic penetration of confined alumina cylinders are
presented as a function of microstructure and properties and compared with literature
measurements of the ballistic mass efficiency. It is shown that the model replicates the
measured trends with hardness and grain size. Motivated by this comparison, further
simulations are used to gain a basic understanding of the respective roles of plasticity
and microcracking on penetration and to elucidate the phenomena governing projectile
defeat. �DOI: 10.1115/1.3129765�

Keywords: alumina, sphere impact, grain size, microcracks, plastic deformation,
constraint, hardness

1 Introduction
When confined within a metallic medium, ceramics have suffi-

cient dynamic strength in compression to deform and erode im-
pacting projectiles �1–6�. Without the confinement, the induced
tensile stresses cause extensive cracking that eliminates the ben-
efit. The practical challenge is to conceive designs and to choose
material properties that maintain the confinement for the longest
duration. This challenge occupies a sufficiently large design space
that simulations are required to seek optimal solutions. Moreover,
the dynamic constitutive law used for the ceramic must be capable
of incorporating the microstructure and normative material prop-
erties �toughness and hardness� as input parameters.

The most complete dynamic model is that devised by Johnson–
Holmquist �JH� �5�, which embodies a Drucker–Prager yield sur-
face �7� that evolves damage through the effective plastic strain,
analogous to the Johnson–Cook model �8� devised for metals.
Once calibrated, this model is capable of predicting the penetra-
tion of projectiles into ceramic targets �9�. The limitation for
present purposes is that, since the coefficients and exponents in
the model are not connected to basic microstructure/property re-
lationships, they must be recalibrated for each candidate ceramic.
The Deshpande and Evans �10� �DE� model addresses this defi-
ciency by specifically incorporating the inelastic deformation phe-
nomena: microcracking and plastic slip �Appendix�. Because the
model explicitly incorporates the mechanisms, most of the prop-
erties required for simulations can be obtained from a few
straightforward quasistatic tests �10�. The capabilities of the

model have been illustrated by predicting the response of alumina
to quasistatic impression by hard spheres �11�. It reproduces the
observation that the proportion of the inelastic strain contributed
by plasticity increases as the grain size decreases �12� and suc-
cessfully predicts the grain size dependence of both the inelastic
zone dimensions and the penetration pressure. To be comparably
credible under dynamic circumstances, the model must �at least�
be capable of predicting the influence of material properties on the
depth-of-penetration under highly confined conditions, character-
ized by the ballistic mass efficiency, Em �Fig. 1�. For alumina, a
large body of experimental measurements has revealed that Em
increases with increasing hardness �13� �Fig. 1�b�� but is unaf-
fected by the grain size �14� �Fig. 1�a��.

The present article addresses the suitability of the DE model for
dynamic simulations by replicating the foregoing experimentally
obtained penetration trends �Fig. 1�. For this purpose, simulations
are conducted by using a rigid sphere that impacts an alumina
cylinder subject to various levels of confinement �Fig. 2�. The
results are presented in the following sequence. In a first step, the
basic inelastic responses to impact predicted by the DE model are
established. In a second step, simulations of the penetration depth
as functions of hardness and grain size are conducted and used to
compare with the trends in ballistic mass efficiency. Motivated by
this comparison, the trends in inelastic deformation with hardness
�yield strength� are established as well as the consequences for the
projectile defeat mechanism. Thereafter, the coupled effects of
grain size and confinement are analyzed.

2 Dynamic Penetration of Confined Alumina Targets
To illustrate the capabilities of the DE constitutive model, a

prototypical dynamic problem is analyzed. It involves a rigid
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sphere �diameter Dp� impacting an alumina cylinder �diameter
Dc�Dp and height H� at velocity vo subject to various levels of
confinement �Fig. 2�. In representative experiments �13,14�, the
cylinder is confined by a steel sleeve. This situation is simulated
by constraining the displacement of the outer surface, as sketched
in Fig. 2�a�. The DE model, along with the various material pa-
rameters and their reference values, are summarized in the Appen-
dix.

For specified ceramic strain-rate sensitivity and strain harden-

ing �fixed values of l̇o, m, M, �Y, n, �̇o, and �̇t�, the general di-
mensionless form of the stress in the ceramic cylinder at time t
after the impact is

�ij�t�
� f

= Fij� t�� f/�
Dp

,
�p

�
,�,

� f

�Y
,

d

Dp
,
� f

G
,�,�� �1�

where � f �KIC /��Dp, t̄� t�� f /� /Dp, and � is the nondimen-
sional kinetic energy of the impacting sphere, ����pvo

2 /12� f,
with �p its density. The time-dependent histories of the crater
depth u�t̄� /Dp and width w�t̄� /Dp depend on the same set of vari-
ables. Implicit are weak dependencies on the friction between the
projectile and the alumina, as well as the ratio, Dc /Dp.

Simulation setup. The constitutive model has been implemented
in the finite element �FE� code ABAQUS/EXPLICIT through a user-
defined material subroutine. The simulations were performed us-
ing four-noded, axisymmetric elements with reduced integration
�CAX4R�. A uniform mesh size was employed in order to accu-
rately capture the propagation of damage away from the impact
site. All calculations employ a mesh size of 64 �m �further re-
finement did not change the results�. Mesh insensitivity and sta-
bility are inherent features of the DE model, not present in other
damage models. This desirable feature is imparted by the dilata-
tion that occurs as the alumina microcracks. The consequence is
that, during penetration, the dilatation is resisted by the constraint,
thereby increasing the stress triaxiality and elevating the shear
strength of the damaged alumina. Thus, unlike tension-dominated
loading situations, catastrophic softening does not occur and the
simulation results are largely mesh-size insensitive.

Specific calculations have been conducted using alumina cylin-
ders, with diameter Dc=25.4 mm and height H=25.4 mm, im-
pacted by a sphere having diameter Dp=6.35 mm and density
�p=15.6 mg m−3 �representative of Tungsten Carbide�. Sticking
friction was assumed between the sphere and the alumina over the
contact area. To avoid numerical artifacts, damping associated
with volumetric straining in ABAQUS/EXPLICIT was switched off
�using the default viscosity results in substantial artificial viscous
dissipation upon bulking�.

Basic features. The fundamentals entailed in high velocity pen-
etration emerge from calculations conducted at v0=1000 m s−1

on fine-grained material �d=3 �m� with the reference yield
strength, �Y =4 GPa. The ensuing damage D and plastic strain �e

pl

contours at selected times t after the impact event are plotted in
Fig. 3. The damage plots are shaded so as to illustrate only the
fully comminuted zone �D=1� and undamaged zones �D=D0�,
while the plastic deformation plots reveal strains up to �e

pl	0.6.
Along the axis, the damage only initiates after the impacting
sphere begins to rebound �at t	3 �s�, whereas plastic strains
evolve only during penetration �at t
3 �s�. The interpretation of
these features is motivated by the spherical cavity expansion cal-
culation described elsewhere �10�. As the spherical elastic wave
emanates from the contact, the associated triaxiality, �, is large
enough to inhibit the growth of microcracks. Later, at lower im-
pact velocities �1000 m s−1, the decrease in � with distance into

Fig. 1 Measured values of the ballistic mass efficiency Em of
alumina as a function of „a… the grain size d †13‡ and „b… Vickers
hardness †15‡. Em is defined in the insets with Tc the thickness
of the ceramic layer, PR the residual penetration into RHA, and
Pref the penetration of the projectile into a reference RHA block
without the ceramic front plate. Here �c and �m are the densities
of the ceramic and RHA, respectively. �Y=4 GPa.

Fig. 2 Schematic of the alumina cylinder impacted by a hard
sphere. The dashed line represents the symmetry axis. „a… The
confined target and „b… the unconfined target.
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the elastic wake is sufficient to allow a microcrack zone to form
and propagate behind the elastic front �10�. At higher impact ve-
locity ��1000 m s−1�, the response changes because the stresses
generated become large enough to induce plastic slip �in prefer-
ence to a microcrack zone�, causing a plastic zone to form and
expand in the wake of the elastic wave, as the projectile pen-
etrates. Moreover, behind the plastic wave, � increases signifi-

cantly, continuing to suppress microcracking. Subsequently, as the
impacting sphere begins to rebound �at about t=3 �s�, the tensile
elastic waves generated from the contact increase �, causing dam-
age to permeate the cylinder.

This simple view of the impact process is not applicable near
the periphery of the contact where the free surface disrupts spheri-
cal symmetry. The free surface reduces the triaxiality relative to
that along the symmetry line, resulting in extensive damage, with-

Fig. 4 The variation of the normalized maximum penetration
� /Dp of the d=3 �m confined ceramic target as a function of
the normalized inverse yield strength �f /�Y. Results are shown
for three selected values of the normalized kinetic energy Ω
corresponding to impact velocities vo=1000, 500, and
100 m s−1. For comparison purposes, the corresponding re-
sults with damage inhibited are also included and labeled
“plasticity-only.”

Fig. 5 Predictions of the normalized maximum penetration of
the projectile „� /Dp… as a function of the normalized grain size
d /Dp for three selected values of the normalized kinetic energy
Ω corresponding to impact velocities vo=1000, 500, and
100 m s−1. The results pertain to the confined ceramic target
with �Y=4 GPa.

Fig. 6 Distributions of damage at maximum penetration in the
confined ceramic targets with grain sizes „a… d=3 �m and „b…
d=20 �m impacted at vo=1000 m s−1. The ceramic yield
strength is taken as �Y=4 GPa. The contours are shaded so as
to only illustrate the fully damaged „D=1… and undamaged „D
=D0… regions.

Fig. 3 The distribution of „a… damage D and „b… plastic strain
εe

pl in the confined ceramic target with reference properties at
selected times t after the impact of the sphere traveling at vo
=1000 m s−1. The contours in „a… are shaded so as to only il-
lustrate the fully damaged „D=1… and undamaged „D=D0…

regions.
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out detectable plastic deformation. Moreover, the material that
comminutes in this zone is ejected from the periphery, resulting in
a crater.

3 Comparison Between Simulations and Experiments
To examine the influence of yield strength �hardness� on the

penetration resistance of the confined fine-grained �d=3 �m� alu-
mina, the maximum penetration  is calculated �for 1 GPa
�Y

20 GPa� and plotted as a function of the inverse yield strength

� f /�Y �Fig. 4� for the three selected values of the initial kinetic
energy � �projectile velocities, vo=1000, 500, and 100 m s−1�. In
all cases, the penetration decreases with increasing �Y, before
saturating, consistent with the trend in the ballistic mass efficiency
�Fig. 1�b��. Corresponding predictions of the maximum penetra-
tion at fixed yield strength �Fig. 5� reveal that, at all velocities, the
penetration is grain size invariant, again consistent with the trend
in the ballistic mass efficiency �Fig. 1�a�� �14�. This invariance
arises despite the grain size sensitivity of the stress/strain response
�Fig. 13� and even though significantly more damage is observed
in the coarser-grained alumina �Fig. 6�. The rationalization is that
the bulking upon microcracking sufficiently increases the triaxial-
ity �due to the confinement� that the damaged material maintains a
pressure comparable to that of the undamaged material �10�.

Fig. 7 The distribution of „a… damage D and „b… plastic strain
εe

pl in the confined ceramic targets impacted by a hard sphere
traveling at vo=1000 m s−1. The distributions are shown at the
instant of maximum penetration, tp, for the d=3 �m ceramic
with yield strengths in the range 1 GPa
�Y
20 GPa. The
contours in „a… are shaded so as to only illustrate the fully dam-
aged „D=1… and undamaged „D=D0… regions.

Fig. 8 The variation of the normalized final velocity of the im-
pacting sphere −vr /vo with the normalized inverse yield
strength �f /�Y. The numerical results are for the d=3 �m con-
fined ceramic target and three selected values of the normal-
ized kinetic energy Ω corresponding to impact velocities vo
=1000, 500, and 100 m s−1. By convention a positive velocity is
in the direction of the impact velocity of the projectile.

Fig. 9 „a… The temporal variations of the energy dissipations,
strain energy, and kinetic energy of the alumina cylinder im-
pacted by a sphere traveling at vo=1000 m s−1. The alumina
has a grain size d=3 �m and yield strength �Y=4 GPa. „b… The
normalized final plastic and fracture dissipations in the d
=3 �m confined ceramic target as a function of the normalized
inverse yield strength �f /�Y. The dissipations are normalized
by the initial kinetic energy of the projectile and the results are
shown for two selected values of the normalized kinetic energy
Ω corresponding to impact velocities vo=1000 and 100 m s−1.
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The correspondence between these two simulations and the bal-
listic experiments provides sufficient credibility in the mechanistic
basis of the DE model to use it to examine some of the funda-
mentals affecting penetration.

4 Influence of Yield Strength
The distribution of damage and plastic strain at the instant of

maximum penetration1 is shown in Fig. 7. The extent of the plas-
tic zone and the strains within the zone both decrease with in-
creasing �Y. The damage also increases with increasing �Y but
saturates at about �Y =8 GPa. That is, the damage is nearly iden-
tical when �Y =8 and 20 GPa. This feature emerges because plas-
ticity suppresses microcracks by increasing triaxiality �discussed
above�. Namely, increasing �Y diminishes plasticity, thereby de-
creasing � in the elastic wake, allowing larger levels of damage.
Moreover, at a critical �Y the alumina becomes an elastic-brittle
solid.

To clarify the transition from a plasticity- to damage-dominated
response we suppressed the growth of the microcracks by employ-
ing an artificially high toughness. The results are included in Fig.
4. Note that the penetration now decreases monotonically with an
increase in �Y. Moreover, at low �Y, the predicted penetrations are
unaffected by the inclusion of microcracking, indicating that plas-
ticity dominates the response. The switch from plasticity to dam-
age domination alters the armor defeat mechanism from kinetic
energy absorbing to “reflecting,” as illustrated in Fig. 8, where the
ratio of the rebound-to-initial projectile velocity −vr /vo is plotted
as function of � f /�Y. Upon increasing the yield strength, the pro-
jectile loses a smaller fraction of its initial kinetic energy as it
penetrates, causing it to rebound with increasing velocity.

The change in the defeat mechanism is also evident in the tem-
poral variations of the dissipations �plastic and fracture� �Fig.
9�a�� as well as the dependence of the final dissipations on �Y
�Fig. 9�b��. While the plastic dissipation decreases with increasing
�Y, and the microcrack dissipation increases, the latter is always a
small fraction of the initial kinetic energy of the projectile. Thus,

when microcracking dominates, the ceramic reflects the projectile
rather than absorbing its kinetic energy and vice versa, when plas-
ticity dominates.

5 Effect of Grain Size
The calculations are repeated upon removing the confinement

on the cylindrical surface, as indicated in Fig. 2�b�. The temporal
variation of the normalized displacement u /Dp is plotted in Fig.
10 for two choices of the grain size �d=3 �m and 20 �m� and
the corresponding states of damage are presented in Fig. 11. The
d=3 �m alumina defeats the incoming projectile, causing it to
rebound. However, for the d=20 �m alumina the projectile con-
tinues to travel into the target, albeit at a reduced velocity. This
happens because the loss of constraint causes the damage zone to
extend to the outer surface of the cylinder �Fig. 11�, resulting in
collapse.

The coupled roles of confinement and grain size can be under-
stood as follows. In the unconfined state, the elastic wave that
impinges on the side surfaces of the cylinder reflects as a tensile
wave. This wave creates damage in its wake for the d=20 �m
material, but its amplitude is too small to microcrack the d
=3 �m material �Fig. 13 illustrates the differences of the
strengths of the coarse and fine-grained materials�. For the coarse-

1The time at which maximum penetration occurs is t= tp
3 �s, except for the
�Y =1 GPa case, when tp
5 �s.

Fig. 10 The temporal variation of the normalized displacement
u /Dp of the hard sphere impacting the unconfined ceramic tar-
get at vo=1000 m s−1. The ceramic has a yield strength �Y
=4 GPa and results are shown for grain sizes d=3 and 20 �m.

Fig. 11 Distributions of damage at two selected times in the
unconfined ceramic targets with grain sizes „„a… and „b…… d
=3 �m and „„c… and „b…… d=20 �m impacted at vo
=1000 m s−1. The ceramic yield strength is taken as �Y
=4 GPa. The contours are shaded so as to only illustrate the
fully damaged „D=1… and undamaged „D=D0… regions.
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grained material, the tensile �spallation� zone converges with the
compressive damage zone emanating from the impact site, result-
ing in fully comminuted material that ejects from the sides. Con-
sequently, the projectile continues to penetrate. With confinement,
the wave reflected from the sides is compressive and does not
contribute to damage progression.

6 Concluding Remarks
The inelastic constitutive law for polycrystalline ceramics re-

cently devised by Deshpande and Evans �10� has been imple-
mented in ABAQUS/EXPLICIT and used to generate mechanistic in-
sights into the dynamic response of polycrystalline alumina
impacted at high velocity. The emphasis has been on the hereto-
fore unexplained influences of grain size and yield strength on the
penetration. An elucidation of the subtle effects of the triaxiality,
�, induced during impact has provided the requisite insight. The
following effects have emerged: �i� the strong influence of � on
the incidence of damage, �ii� the onset of plasticity further in-
creases triaxiality and suppresses damage, and �iii� in the presence
of constraint, the damage creates its own triaxiality elevation. The
consequence is a major influence of constraint on the temporal
and spatial evolution of damage. This, in turn, causes the grain
size to be unimportant for test scenarios with substantial con-
straint, but extremely important when the constraint is diminished,
in accordance with findings reported in the literature. Moreover,
the model predicts that, within a certain range, alumina becomes
more penetration resistant upon increasing hardness, consistent
with measurements.
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Nomenclature
a � radius of initial flaw

c1 ,c2 ,c3 � functions defined in the Appendix
d � grain size
f � microcracks per unit area

g1 � a�g1d
g2 � 1 / f1/3�g2d

l � length of wing crack

l̇0 � reference crack growth rate
m � crack growth rate exponent
n � plasticity strain-rate exponent
t � time after impact

tp � time at maximum penetration
t̄ � normalized time t�� f /� /Dp
u � crater depth

vo � impact velocity
vr � rebound velocity of projectile
w � crater width

A ,B ,C ,E � functions that govern the stress intensity
A1 ,A3 � functions defined in the Appendix

Em � ballistic mass efficiency
D � current damage level

D0 � initial damage level
Dc � diameter of ceramic cylinder
Dp � diameter of projectile
H � height of ceramic cylinder
G � shear modulus of the uncracked ceramic
KI � mode I stress intensity factor at periphery of

wing crack
KIC � mode I fracture toughness

M � strain hardening exponent
Sij � components of deviatoric stresses

W � strain energy density of the ceramic
W0 � strain energy density of the uncracked ceramic

� ,� � constants defined in the Appendix
 � maximum penetration

�e
pl � von Mises effective plastic strain

�ij � components of total strain
�ij

e � elastic strain components
�ij

p � plastic strain components
�̇0 � reference strain rate
�̇t � transition strain rate to linear viscous behavior
�Y � ceramic yield strain
� � stress triaxiality �m /�e
� � friction coefficient along faces of initial flaws
� � Poisson’s ratio of the uncracked ceramic

� � ���pvo
2 /12� f

� � density of the uncracked ceramic
�p � density of projectile material
�e � von Mises effective stress
� f � �KIC /��Dp
�m � hydrostatic stress
�0 � flow stress of ceramic
�ij � stress components
�Y � yield strength of ceramic

Appendix: Synopsis of the DE Constitutive Model

1 Microcracking. Following Ashby and Sammis �15�, the DE
�10� model envisages an array of f microcracks per unit volume,
growing in an otherwise elastic medium �Fig. 12� subject to prin-
cipal stresses, �1 and �3. Each microcrack develops from an ini-
tial flaw, radius a, by means of two wings, length l, extending
parallel to X1 �Fig. 12�. The inclined flaws are subject to Coulomb
friction �coefficient, ��. The flaw radius and separation scale with
the grain size as a=g1d and 1 / f1/3=g2d, respectively. The initial
and current levels of damage are expressed as D0= ��2 /3��a3f
and D= �4 /3���l+a /�2�3f . The mode I stress intensity, KI, at the
periphery of the wing cracks depends on the stress triaxialility,
���m /�e �where �m is the hydrostatic stress and �e is the von
Mises effective stress� in accordance with three regimes �I, II, and
III� and four nonlinear functions of the damage and friction. Func-
tions A, B, C, and E are detailed below. In regime I ��
−B /A�,
the cracks are shut, with KI=0. In regime II, frictional slip occurs
along the initial flaw with

KI/��a = A�m + B�e �A1�

In regime III, �	AB / �C2−A2�, loss of contact along the faces of
the initial flaw occurs, whereupon

KI/��a = �C2�m
2 + E2�e

2�1/2 �A2�

The crack growth rate, l̇, is related to the stress intensity factor by

l̇ = min�l̇0�KI/KIC�m,�G/�� �A3�

where KIC is the mode I �short-crack� fracture toughness, 10


m
20 is the rate exponent, and l̇0 is the reference crack growth
rate at KI=KIC, with G and � the shear modulus and density of the
uncracked ceramic, respectively. The drop in effective modulus as
the microcracks extend is governed by the stress intensities in
accordance with the following strain energy densities. In Regime
I,

W = W0 =
1

4G
�2

3
�e

2 +
3�1 − 2��

1 + �
�m

2 � �A4a�

In Regime II,
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W = W0 +
�D0

�2G�1 + ��
�A�m + B�e�2 �A4b�

In Regime III,

W = W0 +
�D0

�2G�1 + ��
�C2�m

2 + E2�e
2� �A4c�

where W0 and � are the strain energy density and Poisson ratio of
the uncracked ceramic, respectively. The elastic strains �ij

e follow
directly from �ij

e =�W /��ij.

2 Plasticity. When the confining pressure �−�m� increases,
microcracking becomes increasingly difficult and is supplanted by
plasticity. In oxides �such as �-Al2O3� plasticity is limited by the
lattice resistance at low strain rates and by phonon drag at high
rates �16�, and we can relate the plastic strain rate �̇ij

pl to the de-
viatoric stress Sij by

�̇ij
pl

�̇0

= �
3

2

Sij

�0
��e

�0
n−1

if �̇e
pl � �̇t

3

2
� �̇0

�̇t
�1−n�/n Sij

�0
otherwise � �A5�

where �0��e
pl� is the flow stress at an equivalent plastic strain �e

pl,
�̇0 and �̇t are the reference and transition strain rates, respectively,
and 10
n
20 is the rate-sensitivity exponent. Strain hardening
due to the blocking of slip by grain boundaries is expressed in the
power law form

�0 = ��Y/2��1 + ��e
pl/�Y�M� �A6�

where �Y is the uniaxial yield strength, �Y is the yield strain, and
M is the strain hardening exponent. The total strain rate is

�̇ij = �̇ij
e + �̇ij

pl �A7�

Recall that strain-rate effects are included in the model through
two phenomena: �i� a rate dependent damage or crack growth law
�Eq. �A3�� and �ii� rate dependent plasticity �Eq. �A5��.

3 Material Parameters. The following properties, taken
from Ref. �10�, are used for alumina: G=146 GPa, �=0.2, �

=3700 kg m−3, KIC=3 MPa m1/2, �Y =0.002, l̇0=100 �m s−1,
�̇0=1 s−1, �̇t=106 s−1, �=0.75, �=0.1, �=2, m=n=10, and M
=0.1. Since the flaws have dimensions restricted to the grain facet
length, g1=0.25 �17�. The spacing of the flaws is largely dictated
by the separation of the grains at the large extreme. Calibrations
conducted by comparing predictions and measurements of the di-
mensions of the inelastic zone size upon impressing with a hard
sphere �11� have revealed that g2=2 is an appropriate choice.

4 Stress/Strain Responses. The foregoing constitutive repre-
sentation predicts high strain-rate ��̇e=100 s−1� trends in the von
Mises effective stress �e as a function of the effective strain �e ��e
is the work conjugate to �e� depicted in Fig. 13 for alumina with
�Y =4 GPa and grain sizes, d=3 �m and 20 �m. Predictions are
included for triaxialities ranging from uniaxial tension ��=1 /3� to
a high confining pressure ���−0.4�. At lower triaxialities ��	

Fig. 12 A sketch of a microcracked solid containing a distribution of wing
cracks. The insets show an isolated crack with the wedging force Fw acting
at the midpoint and the matrix stress �3

i that determines the interaction of
adjacent cracks.
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−1 /3�, the strengths are microcrack governed. In such cases, the
material with the finer grains is stronger and some plasticity pre-
cedes failure, even under uniaxial compression. The occurrence of
plastic strain has not been reported experimentally because of the
extreme difficulty in the conduct of uniaxial compression experi-
ments �18,19�. The closest experimental affirmation is that asso-
ciated with indentation, as elaborated in Ref. �11�. At high triaxi-
alities ��
−0.45 and �1/3, respectively�, plasticity is the
dominant mechanism at both grain sizes, rendering identical re-
sponses.

5 Details of the Coefficients. Functions A, B, C, and E in the
DE model are strongly dependent on the damage and friction co-
efficient �, as detailed below. Readers are referred to Ref. �10� for
detailed derivations. Here we list the formulas for the sake of
completeness. Functions A and B are given as

A � c1�c2A3 − c2A1 + c3� �A8a�
and

B �
c1

�3
�c2A3 + c2A1 + c3� �A8b�

respectively, where

c1 =
23/4

�2�� D

D0
1/3

− 1 + ��2�3/2
�A9a�

c2 = 1 + 2�� D

D0
1/3

− 1�2� D0
2/3

1 − D2/3 �A9b�

and

c3 = �2�� D

D0
1/3

− 1�2

�A9c�

while

A1 = ���

3
��1 + �2�1/2 − �� �A10a�

A3 = A1� �1 + �2�1/2 + �

�1 + �2�1/2 − �
� �A10b�

The functions C and E are obtained by matching the elastic strains
across the boundaries of regimes II and III and dictate that

C � A + ��21/2� D

D0
1/3

�A11�

while

E2 =
B2C2

C2 − A2 �A12�
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Integrated Experimental,
Atomistic, and Microstructurally
Based Finite Element
Investigation of the Dynamic
Compressive Behavior of 2139
Aluminum
The objective of this study was to identify the microstructural mechanisms related to the
high strength and ductile behavior of 2139-Al, and how dynamic conditions would affect
the overall behavior of this alloy. Three interrelated approaches, which span a spectrum
of spatial and temporal scales, were used: (i) The mechanical response was obtained
using the split Hopkinson pressure bar, for strain-rates ranging from 1.0�10�3 s to
1.0�104 s�1. (ii) First principles density functional theory calculations were undertaken
to characterize the structure of the interface and to better understand the role played by
Ag in promoting the formation of the � phase for several �-Al interface structures. (iii)
A specialized microstructurally based finite element analysis and a dislocation-density
based multiple-slip formulation that accounts for an explicit crystallographic and mor-
phological representation of � and �� precipitates and their rational orientation rela-
tions were conducted. The predictions from the microstructural finite element model
indicated that the precipitates continue to harden and also act as physical barriers that
impede the matrix from forming large connected zones of intense plastic strain. As the
microstructural FE predictions indicated, and consistent with the experimental observa-
tions, the combined effects of �� and �, acting on different crystallographic orientations,
enhance the strength and ductility, and reduce the susceptibility of 2139-Al to shear
strain localization due to dynamic compressive loads. �DOI: 10.1115/1.3129769�

1 Introduction
High strength Al–Cu–Mg alloys, such as 2024-Al and 2048-Al,

were widely used in applications that require high fracture tough-
ness and crack propagation resistance, such as aircraft structures,
automotive applications, armored vehicles, and electronic packag-
ing devices. These alloys do not generally perform well at high
temperatures. Therefore, heat resistant alloys, such as 2219-Al and
2618-Al, were used in applications that require high specific
strength and high temperature capability. These heat resistant Al–
Cu–Mg alloys, however, have limited fracture strength and dam-
age tolerance �1�.

The addition of small amounts of Ag to Al–Cu–Mg alloys with
high Cu to Mg ratios can significantly improve the age hardening
response by the nucleation of thermally stable, platelike � pre-
cipitates on �111� planes in the aluminum matrix �2�. Moreover,
Al–Cu–Mg–Ag alloys have less grain boundary �GB� precipita-
tion, and therefore retain most of their toughness after age hard-
ening, and were less susceptible to intergranular fracture �3,4�.

Therefore, Al–Cu–Mg–Ag alloys can potentially have relatively
high strength, temperature resistance, toughness, and damage tol-
erance. Specifically, the Al–Cu–Mg–Ag alloy 2139-T8 developed
by Cho and Bes �5� showed, after the addition of Mn for disper-

soid formation, significantly improved fatigue life and fracture
toughness in comparison to currently used alloys in the aerospace
industry. Moreover, the ballistic performance of 2139-Al was also
shown to be potentially superior to that of Al-2519, which is used
in armored vehicles �5�.

The potential use of Al–Cu–Mg–Ag alloys for different appli-
cations was therefore predicated on understanding, identifying,
and optimizing the material mechanisms and behavior related to
increased strength and toughness. If these alloys were to be tai-
lored for a desired application, optimal trade-offs between the
competing requirements of strength and toughness have to be
identified and controlled. Hence, a detailed understanding of the
microstructural constituents in 2139-Al and their influence on the
mechanical behavior is needed. Specifically, it has to be under-
stood why the addition of Ag was favorable to the formation of �
precipitates, how � and �� precipitates affect toughening and
strengthening behavior at different scales in terms of microstruc-
tural characteristics, such as crystal orientation and dislocation-
density interactions at matrix-precipitate interfaces. A comprehen-
sive experimental-cum-modeling overview of these issues was
lacking, especially for high strain-rate modes and regimes.

Hence, the objective of this study was to identify the micro-
structural mechanisms related to the high strength and ductile be-
havior of 2139-Al, and how dynamic conditions would affect the
overall response of this alloy. Hence, three interrelated approaches
were used: �i� The mechanical response �stress-strain� behavior
was obtained using the split Hopkinson �Kolsky� pressure bar, for
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strain-rates ranging from 1.0�10−3 s to 1.0�104 s−1. �ii� First
principles density functional theory calculations were conducted
to characterize the structure of the interface and to better under-
stand the role played by Ag in promoting the formation of the �
phase for several �-Al interface structures. �iii� A specialized mi-
crostructurally based finite element �FE� analysis and dislocation-
density based multiple-slip formulation that accounts for an ex-
plicit representation of precipitates and their rational orientation
relations was conducted. This microstructural formulation ac-
counted for precipitate shape, aspect ratio, volume fraction, crys-
tal structure, and the different slip systems and orientations asso-
ciated with the alloy matrix and precipitates. The effects of stress
and plastic slip accumulation at precipitate interfaces, GBs, grain
interiors, and dislocation-density evolution at the matrix-
precipitate interfaces were investigated. This integrated approach
provided insights that are difficult, if not impossible to obtain, if
only an experimental or a computational approach was used.

This paper is organized as follows: An overview of the experi-
mental method was presented in Sec. 1, the first principles results
are given in Sec. 2, an outline of the microstructural approach and
specialized FE approach are given in Sec. 3, the results are dis-
cussed in Sec. 4, and a summary of the salient conclusions are
given in Sec. 5.

2 High Strain-Rate Experiments
The high strain-rate behavior of metals and alloys was widely

recognized to play an important role in several technologies in-
cluding manufacturing processes, such as rolling, forming, and
high-speed machining, as well as in ballistic failure, dynamic
crack growth, and shear banding. Accurate computational model-
ing of these processes requires the knowledge of material behav-
ior at large strains over a wide range of strain rates. Relevant
constitutive data were also essential for validating and developing
multiscale material models �6,7�. The validation of such models
requires robust experimental measurements that can be used to aid
in the refinement of these models aimed at bridging length scales
in high strain-rate deformation of metals. The dynamic nature of
the above mentioned processes motivated the study of high-strain
rate deformations.

In this section a description of the large strain mechanical re-
sponse of 2139-Al over strain rates ranging from �̇�10−3

–104 s−1 is presented. The material of this study was supplied as
rolled plates from Alcan Rolled Products �Ravenswood, WV� and
then machined as cylinders.

Quasistatic testing was carried out on a computer controlled
MTS servohydraulic machine, operated under displacement con-
trol. The machine’s stiffness was taken into account when produc-
ing stress-strain data. High-rate constitutive behavior was investi-
gated using a 19 mm diameter Kolsky �split Hopkinson� pressure
bar �8�, made of C300 maraging steel. The signal processing ac-
counted for wave dispersion according to the algorithm of Lifshitz
and Leber �9�. Strain-rate jump tests were carried out using spe-
cially designed 30 cm long cylindrical projectiles. Two cylindrical
impactors were used. The geometry of the first had a length of 15
cm where the diameter is constant at 19 mm, and for the remain-
der of the 30 cm length, the diameter was stepwise reduced from
19 mm to 12.7 mm. The second impactor also had a constant
diameter of 19 mm along the first 15 cm of length, and for the
remainder of the impactor length, the diameter was also stepwise
reduced from 19 mm to 9.61 mm. The specimens were cylindrical,
with 6 mm in diameter and 6 mm in length.

Typical stress-strain curves obtained over a wide range of strain
rates are shown in Fig. 1. At quasistatic strain rates ��10−3 s−1�,
the material exhibited considerable hardening; it deformed to
large equivalent strains of up to 10% and had a strength of ap-
proximately 800 MPa, which is significantly higher than most
aluminum alloys. As the strain rate was increased to 8100/s, the
material exhibited significant ductility of up to 80%. There was
slight stress softening, but as seen from Fig. 1, the strengths were

only slightly lower than those observed in the quasistatic regime.
The strain-hardening behavior did not seem to be highly rate de-
pendent. The stress-strain response softened in the dynamic re-
gime at true strains below 10%. The flow stress at �true=0.06 is
plotted as a function of strain rate in Fig. 2. The material exhibited
considerable rate sensitivity, particularly at strain rates beyond
103 s−1. The highest strain rate achieved was approximately
104 s−1, a strain rate that was generally not achievable in a split
Hopkinson �Kolsky� pressure bar using cylindrical specimens.
These results were an indication of 2139-Al’s high strength and
significant ductility over a span of different strain rates. Atomistic
and microstructurally based FEM modelings were used to further
understand the underlying mechanisms that affect this response.

3 Atomistic Modeling of Omega Precipitates
To characterize the structure of the interface and to better un-

derstand the role played by Ag in promoting the formation of the
� phase, which could be one of the main microstructural charac-
teristics affecting the desirable behavior of 2139-Al, first prin-
ciples density functional theory calculations were carried out on
several �-Al interface structures both with and without Ag and
Mg. The calculations used the Vienna ab initio simulation package
�VASP� �10,11�, and were carried out within the generalized gradi-
ent approximation using the PW91 parameterization �12,13�.
Valence-core electron interactions were treated using ultrasoft
pseudopotentials �14�, and the valence electron wave functions
were expanded in plane wave basis sets with a 300 eV energy
cutoff using the Monkhorst–Pack method for special k-point sam-

Fig. 1 True-stress true-strain curves for 2139-Al under varied
loading rates. The quasistatic stress-strain curve, obtained
from the MTS servohydraulic machine under displacement
control, shows considerable hardening. The high strain-rate
curves, obtained from the split Hopkinson pressure bar, show
extensive ductility „up to 80%… and slight stress softening of
the 2139-Al alloy.

Fig. 2 Strain-rate sensitivity of flow stress in 2139-Al at an
equivalent strain of 0.06 exhibiting considerable material rate
sensitivity, particularly at strain rates beyond 103 s−1
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pling for the Brillouin zone integration �15�. Three-dimensional
periodic boundary conditions were applied, and both the cell vol-
ume and atomic positions within the cell were relaxed.

A small supercell of 76 atoms was used to characterize the pure
�-Al /� interfacial structure. Three different types of chemical
bonds, Al–Al, Al–Cu, or Al–Cu plus Al–Al may be formed across
the �-Al /� interface depending on the termination of the �001� �
planes. Several relative displacements of the � structure, with
respect to the Al lattice, were used as initial structures within these
three termination types followed by energy minimization. The
most stable structure of the �-Al /� interface was found to be
connected by Al–Al bonds with a hexagonal Al lattice on the
surface of the � phase, sitting on the vacant hollow sites of the Al
�111� matrix plane.

Starting with this interface structure, heats of formation were
calculated for an extensive set of trial structures in which Mg
and/or Ag atoms were substituted for the interfacial Al. A larger
152 atom supercell was used for these calculations to reduce size
effects and supercell image interactions. The results of these cal-
culations indicate that when only Mg is introduced, the tendency
for segregation to the interface was minimal and the strength of
the interface was not enhanced. In contrast, Ag has a strong ten-
dency to segregate to a dense substitutional layer that was one
layer away from the interface into the Al lattice. This occurs be-
cause Ag and Al form relatively strong bonds, and there was a
reduced planar density of Al atoms in the � phase to which the Ag
can bond. However, the strongest bonding, and hence the greatest
stabilization of the interface, occurs when the Mg substitutes for
the Al layer closest to � phase and the Ag substitutes for the Al in
the next layer into the Al, hence forming an interfacial bilayer like
that observed experimentally. To illustrate the relationship of
structure to experiment, shown in Fig. 3 is a superposition of the
atomic arrangement �left� and the electron density �right� from the
first principle calculations over the experimental Z contrast high
resolution transmission electron microscopy �HRTEM� image
from Ref. �16� of the Al-� interface. Our theoretically determined
structure allows strong Ag–Al, Mg–Cu, and Ag–Mg bonding
while excluding the weaker Ag–Cu bonds. The analysis of the
charge density at the interface shows a net transfer of electrons to
the � and Al matrix from the interface region that contributes to
interface stabilization. Hence, the first principle modeling pro-
vides both a viable atom-resolved structure consistent with experi-

ment and provides insight into the driving force for the stability of
this interface in terms of bonding strengths and electron charge
transfer.

4 Microstructural Finite Element Model

4.1 Crystal Plasticity Formulation. Constitutive formula-
tions for the rate-dependent multiple-slip crystal plasticity, which
are coupled to the evolutionary equations for the dislocation den-
sities, were used. For a detailed presentation, see Refs. �17–19�.

The velocity gradient was decomposed into a symmetric defor-
mation rate tensor Dij and an antisymmetric spin tensor Wij. Dij
and Wij were then additively decomposed into elastic and plastic
components as

Dij = Dij
� + Dij

p �1a�

Wij = Wij
� + Wij

p �1b�

The inelastic parts are defined in terms of the crystallographic slip
rates as

Dij
p = Pij

����̇��� �2a�

Wij
p = �ij

����̇��� �2b�

where � is summed over all slip systems, and Pij
��� and �ij

��� are the
symmetric and antisymmetric parts of the Schmid tensor in the
current configuration, respectively.

The rate-dependent constitutive description on each slip system
can be characterized by a power law relation, for strain rates be-
low a critical value of �̇critical as

�̇��� = �̇ref
���	 	���

	ref
���
	 �	����

	ref
��� 
1/m−1

�3�

where �̇ref
��� is the reference shear strain rate, which corresponds to

a reference shear stress 	ref
���, and m is the rate sensitivity param-

eter. Above the critical strain rate �̇critical, where the phonon drag
is assumed to dominate, m is taken as 1 and �̇ref

���= �̇critical. Mugh-
rabi �20� stressed that what was used here was a modification of
widely used classical forms that relate the reference stress to a
square-root dependence on the dislocation density �
im� as

	ref
��� = �	y

��� + G

=1

nss

a
B�
��
im
�
��� T

T0
�−�

�4�

where 	y
��� is the static yield stress on slip system ���, G is the

shear modulus, nss is the number of slip systems, B�
� is the mag-
nitude of the Burgers vector, and the coefficients a
 are the slip-
system interaction coefficients. T is the temperature, T0 is the
reference temperature, and � is the thermal softening exponent.

For a given deformed state of the material, the dislocation
structure of total dislocation density 
��� is additively decomposed
into a mobile and an immobile dislocation density 
m

��� and 
im
���,

respectively, as


��� = 
m
��� + 
im

��� �5�
It is assumed that during an increment of strain, there ensues a

change in the dislocation structure. The balance between genera-
tion and annihilation of dislocation densities as a function of strain
is thus taken as a basis for the following equations that describe
the evolution of mobile and immobile dislocation densities:

d
m
���

dt
= ��̇����	 gsour

B���B����
im
���


m
���� −

gminter

B���B���exp�−
�H

kT
�

−
gimmob

B���
�
im

���
 �6�

Fig. 3 Superposition of the atomic arrangement „left… and the
electron density „right… from the first principles calculations
over the experimental Z contrast HRTEM image from Ref. †1‡ of
the Al-Ω interface
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d
im
���

dt
= ��̇����	 gminter

B���B���exp�−
�H

kT
� +

gimmob

B���
�
im

���

− grecov exp��H

kT
�
im

���
 �7�

where gsour, gminter, grecov, and gimmob are coefficients correspond-
ing to the generation of mobile dislocation densities, trapping of
mobile dislocations by dislocation-dislocation interactions, rear-
rangement and annihilation of immobile dislocations by recovery,
and immobilization of mobile dislocations, respectively. For a de-
termination of these coefficients, see Ref. �21�. �H is the enthalpy
of activation of plastic deformation, and k is the Boltzmann con-
stant.

4.2 Precipitate-Crystal Representation. As seen from the
Sec. 4.1, the crystal plasticity constitutive formulation requires the
identification of the specific crystal structures, slip systems, and
material properties. In Al–Cu alloys, the � phase �Al2Cu� has an
I4 /mcm structure with a=0.607 nm and c=0.487 nm �22�. The

�� phase has a tetragonal structure I4̄m2, with a=0.404 nm and
c=0.58 nm �23�. The � phase �Al2Cu� was proposed as mono-
clinic �24,25�, hexagonal �26�, and tetragonal distorted � phases
�27�. The accepted structure for the � phase was the orthorhombic
structure �Fmmm� proposed by Knowles and Stobbs �28�, with
a=0.496 nm, b=0.858 nm, and c=0.848 nm. In this study, the
� and �� phases were modeled as I4 /mcm �27,29�, using 12 slip
systems corresponding to the shortest two Burgers vectors in the �
crystals �C16 structure� �30,31�, and with the concomitant rational
orientation relations to the matrix �22�.

4.3 Orientation of Crystal Lattice With Respect to Ele-
ment Axes. First, the Miller indices of planes and directions that
define orientation relations between precipitates and matrix were
defined. The following procedure was then used to crystallo-
graphically orient slip normals and directions within precipitates
and the matrix with respect to the global axes, while observing
matrix-precipitate orientation relations. A schematic representa-
tion of this procedure is shown in Fig. 4 along with the entire
sequence of transformation matrices.

The slip directions and planes for the matrix and precipitates

are defined in fractional coordinates. Since the precipitates are
noncubic, the vectors defining slip-plane normals are not equiva-
lent to their miller indices, and normals may be obtained by a
reciprocal lattice construct. The vectors are then mapped from the
precipitate space to the matrix space. This is achieved by the
transformation sequence �MCart

�� ��M�
Cart�, where �M�

Cart� transforms
a vector in the precipitate �e.g., �� to a vector in a Cartesian
frame, and �MCart

�� � takes the transformed vector from the Cartesian
frame to the matrix crystal. The form of �M� is adapted from Ref.
�32�. The vectors are then aligned according to the orientation
relations by matrix �T��

� �, followed by another transformation
�M�

Cart�, taking vectors from the matrix space to a Cartesian space
if necessary �i.e., matrix crystal is noncubic�. Random Euler
angles are then assigned to every grain to align crystal lattices,
with respect to the polycrystalline aggregate axes. This transfor-
mation, defined as �TCart

poly�, is adapted from Ref. �33�. The poly-
crystalline aggregate axes are then aligned with the corotational
frame of the element �initially identical to the drawing plane�
using �Tpoly

elem�.

4.4 Geometry of the Precipitate Crystals. A large aspect
ratio �L / t=24� was chosen to be consistent with observed values
in quaternary alloys �34�. Further, to capture a microstructural
length scale consistent with precipitates, a thickness of 500 nm
was used. Finally, a total volume fraction of 3% was assumed for
the precipitates.

4.5 2D Finite Element Model. The multiple-slip dislocation-
density based crystal plasticity formulation was implemented
within the framework of the explicit dynamic FE program
ABAQUS/EXPLICIT to investigate the behavior of a polycrystalline
aggregate representative of 2139-Al under large compressive in-
elastic strains and strain rates. An 18 grain aggregate with dimen-
sions of 100�100 m2 �Fig. 5� was used, where the grain size
was of a maximum of 1000 m2. Random Euler angles were
assigned for relative grain misorientations that did not exceed 10
deg. The � and �� precipitates were placed near the centroid of
each grain based on the crystallographic formulations as outlined
earlier �i.e., having aligned their thickness and long directions in
accordance with their rational orientation relationships, with re-

Fig. 4 Illustration of slip vector „Vj… transformation sequence „„a…–„e…… to the element axes. „a… The slip system is identified
in fractional coordinates. „b… The slip system vectors are transformed from precipitate space to matrix space. „c… The
precipitate vectors are aligned with the matrix vectors in accordance with the orientation relationships. „d… The oriented slip
vectors are mapped to the axes of the polycrystalline aggregate. „e… The vectors are mapped from the polycrystalline
aggregate to the element axes.
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spect to each grain, and then projecting these directions in 2D�.
The material properties used in this study are summarized in Table
1 and accompanied by their respective references.

The aggregate was subjected to different nominal axial strain
rates ranging from 10−3 s−1 to 104 s−1 by applying a velocity
along the normal direction. Symmetry boundary conditions were
applied for a 2D plane-strain deformation �Fig. 5� A convergent
mesh of 6500 elements was used. Four-node bilinear plane-strain
quadrilaterals, with one-point integration and enhanced assumed-

strain hourglass control, were used. For representative behavior,
the results for an applied strain rate of 104 s−1 will be presented in
this paper.

5 Microstructural Finite Element Results
The contours of the accumulated plastic slip were shown in Fig.

6. The maximum accumulated plastic strain is 1.4 with most of the
maximum accumulations occurring at the precipitate-matrix inter-

Fig. 5 An 18 grain aggregate with �� and Ω precipitates, subject to an
applied strain rate of 104 s−1 on the upper surface and with symmetry
boundary conditions at the left and bottom edges

Table 1 Material properties for �-Al, Ω and ��

Property Description

Value

ReferenceAl � ,��

E�GPa� Young’s modulus 69 140 �35�
� Poisson’s ratio 0.34 0.34
	y �MPa� Static yield stress 35 35 —

 �g /cm3� Mass density 2.70 4.36 —
Cp �J /kg K� Specific heat 902 902 �36�
�H /k �K� Activation enthalpy/Boltzmann constant 2500 3100 �37�
�̇ref�s−1� Reference strain rate 0.001 0.001 �38�
�̇crit�s−1� Critical strain rate 104 104


im
0 �m−2� Initial immobile dislocation density 1012 108 —


mo
0 �m−2� Initial mobile dislocation density 1010 106 —

T0 �K� Reference temperature 293 293 —
m Strain rate sensitivity 0.02 0.02 �39�
� Thermal softening exponent 0.5 0.5
� Fraction of plastic dissipation to heat 0.9 0.9
gsource Dislocation source coefficient 2.76�10−5 2.76�10−5 �38�
gimmob Dislocation immobilization coefficient 0.0127 0.0127
gminter Mobile dislocation interaction coefficient 5.53 5.53
grecov Recovery coefficient 6.69�105 6.69�105

ai Slip-system interaction coefficient 0.5 0.5
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faces. The curves for the comparison between the precipitate-free
aluminum and the 2139-Al indicate that the presence of precipi-
tates has a significant effect on the plastic slip behavior and dis-
tribution. Specifically, the precipitates are clearly shear deform-
able. This is consistent with observations in Refs. �40–42�. The
slip within the �� and � precipitates has not resulted in slip con-
centration as was often observed with shearable particles �42–44�.
This could be due to the precipitates continuing to harden and also
acting as physical barriers that impede the matrix from forming
large connected zones of intense plastic strain. Moreover, the FE
model, though constrained in plane strain, showed plastic strain
on multiple slip systems in the � and �� precipitates. Therefore,
slip in the precipitates was not planar, and shearing did not local-
ize as would otherwise be expected �45�.

The corresponding adiabatic temperature changes are shown in
Fig. 7. The � precipitates along the selected evaluation path have
a lesser increase in temperature than the �� phase or the matrix,
which indicates that these precipitates may delay thermal soften-
ing of the 2139-Al alloy. This, combined with the diffuse plastic
slip accumulation, is another indication of 2139-Al’s ductility and
lack of susceptibility to shear-strain localization.

The contours in Fig. 8 show the immobile dislocation density
corresponding to slip system �111��011� in the matrix, which was
the most active matrix system, and the immobile dislocation den-
sity corresponding to the most active system �110��112� for the
precipitates. The contours indicate that the matrix slip system

saturated to 1014 m−2 over most grains. This saturation actually
occurred in most of the grains, at a nominal strain of approxi-
mately 12%, which was approximately equivalent to the true
strain at which softening was first observed in the experimental
stress-strain curves.

It was also seen that the dislocation densities attain maximum
values at precipitate-free triple junction points and at precipitate-
matrix interfaces. From the curve, it was seen that peaks in the
immobile dislocation densities were at the matrix � interfaces.
This accumulation at the precipitate interfaces further indicates
the incompatibility of slip in the surrounding matrix with � pre-
cipitates, similar to the observations in Refs. �41,42,46� for �100��

and �111�� precipitates. This accumulation, however, does not oc-
cur for the �� precipitates along the selected path. Furthermore,
the largest immobile dislocation density for � precipitates was at
40% of the value in the matrix and ��, which have both saturated.
This was therefore an indication that � precipitates can add fur-
ther strength and ductility through the interrelated mechanism of
material hardening and dislocation density generation.

The evolution of the reference shear stress values was shown in
Fig. 9. It was clear from the contours that the � precipitates gen-
erally harden more than the surrounding matrix, and often more
than the �� precipitates. The curves in Fig. 9 show hardening
peaks within the � precipitate well above those for the �� precipi-
tates or the matrix for the selected path. Hence, the � precipitates

Fig. 6 „a… Contour plot of plastic slip at a nominal strain of 25%. „b… Plastic slip com-
parison between 2139-Al and precipitate-free Al along path shown in „a….
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Fig. 8 „a… Contour plot of immobile dislocation density normalized by the initial density
for „111…†011‡ slip system in the matrix and „110…†112‡ in the precipitates at a nominal
strain of 25% „i.e., most active slip systems…. „b… Comparison of dislocation densities for
most active slip systems between 2139-Al and precipitate-free Al along path shown in
„a….

Fig. 7 Adiabatic temperature increase comparison between 2139-Al and precipitate-free
Al along a selected path, showing the temperature build up to be the lowest inside the Ω
precipitates
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have a marked effect on strengthening the alloy, and it was more
pronounced than that of the �� precipitates. It was clear, however,
that different grain orientations would align �� and � differently,
with respect to the loading direction, and could thus favor ��
hardening more than �. Hence, the effectiveness of precipitate
strengthening of the alloy was dependent on the crystallographic
orientation of the grains, which governs the relative precipitate
orientations with respect to the loading of the aggregate, a depen-
dence that was consistent with the observations and predictions in
Refs. �46,47�. The presence, therefore, of both �� and �, acting on
different crystallographic orientations in the alloy, could be ex-
pected to enhance the strength and strain-hardening response �45�
for the various grain orientations in the polycrystalline aggregate.

6 Summary
From the experiments, it was observed that the 2139-Al

alloy exhibits considerable hardening at quasistatic strain rates
��10−3 s−1�, can be deformed to large equivalent strains, and has
a strength of approximately 800 MPa, which was significantly
higher than most aluminum alloys. As the strain rate was in-
creased to 8100/s, 2139-Al exhibited significant ductility of up to
80%. There was slight stress softening, but the strengths were
only slightly lower than those observed in the quasistatic regime.
The stress-strain response softened in the dynamic regime at true

strains of approximately 12%. Moreover, 2139-Al exhibits consid-
erable rate sensitivity, particularly at strain rates beyond 103 s−1.
These results are an indication of 2139-Al’s high strength, signifi-
cant ductility, and lack of susceptibility to shear strain localization
under compressive strain rates.

First principles calculations, describing the structure of the
�-Al interface, indicated that the strongest bonding, and hence the
greatest stabilization of the interface, occurs when the Mg substi-
tutes for the Al layer closest to � phase, and the Ag substitutes for
the Al in the next layer into the Al, hence forming an interfacial
bilayer like that observed experimentally �16�. The theoretically
determined structure allows strong Ag–Al, Mg–Cu and Ag–Mg
bonding, while excluding the weaker Ag–Cu bonds. The analysis
of the charge density at the interface showed a net transfer of
electrons to the � and Al matrix from the interface region that
contributes to interface stabilization. Hence, the first principles
modeling provides both a viable atom-resolved structure consis-
tent with experiment and an insight into the driving force for the
stability of the � phase in terms of bonding strengths and electron
charge transfer.

The predictions from the microstructural finite element model
indicated that the precipitates continue to harden, and also act as
physical barriers that impede the matrix from forming large con-
nected zones of intense plastic strain. This understanding was

Fig. 9 „a… Contour plot of reference shear stress normalized by static yield at a nominal
strain of 25%. „b… Comparison of reference shear stress „normalized by static yield…
between 2139-Al and precipitate-free Al along the path shown in „a….
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predicated on the accurate representation of the crystallography of
the precipitates and the matrix. Moreover, the multiplicity of ac-
tive slip systems resulted in the shearing of the precipitates, and
this multiplicity also inhibited shear strain localization. As the
predictions indicated, the combined effects of �� and �, acting on
different crystallographic orientations, enhance the strength and
strain-hardening response of the alloy. The � precipitates had
lower temperature increases than the matrix and therefore could
delay thermal softening. Furthermore, dislocation densities in �
have not saturated. Hence, � had the inherent capacity of increas-
ing strength and ductility to the alloy through the interrelated
mechanisms of hardening, and sustained ductility through precipi-
tate shearing.

This integrated experimental and computational framework that
spans different spatial and temporal scales provides a detailed
understanding of the underlying mechanisms that delineate the
high strength, ductility, and lack of susceptibility to shear strain
localization of 2139-Al over a spectrum of dynamic compressive
strain rates.
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Energy and Momentum Transfer
in Air Shocks
A series of one-dimensional studies is presented to reveal basic aspects of momentum and
energy transfer to plates in air blasts. Intense air waves are initiated as either an isolated
propagating wave or by the sudden release of a highly compressed air layer. Wave
momentum is determined in terms of the energy characterizing the compressed layer. The
interaction of intense waves with freestanding plates is computed with emphasis on the
momentum and/or energy transferred to the plate. A simple conjecture, backed by nu-
merical simulations, is put forward related to the momentum transmitted to massive
plates. The role of the standoff distance between the compressed air layer and the plate
is elucidated. Throughout, dimensionless parameters are selected to highlight the most
important groups of parameters and to reduce parametric dependencies to the extent
possible. �DOI: 10.1115/1.3129773�

1 Introduction
Numerical analysis codes such as LS-DYNA, DYSMAS, and

ABAQUS have been used for some time to model specific fluid-
structure interactions �FSI� involving structures subject to blast
loads generated in water and air environments. These powerful
tools permit engineers to pose and solve complicated practical
problems. In part, because of the availability of these codes, there
has been little inclination in recent years to investigate some of
the most elementary aspects of fluid-structure interaction relevant
to structural design. Fundamental understanding of the role of
intense blast loads on structures in water, which provided the mo-
mentum transferred to a plate struck by a planar wave, is
grounded in results obtained years ago, such as those of Taylor �1�
and Cole �2�. Recently, a significant advancement in basic knowl-
edge became available through an extension of these results to
intense air shocks by Kambouchev et al. �3,4�, which will subse-
quently be referred to as the KNR theory. The study of basic
one-dimensional fluid-structure interaction problems for air blasts
is continued in this paper to elucidate behavior and to add to the
store of relatively simple fundamental results.

Section 2 introduces some of the properties of intense planar
waves. A standard device for bypassing detailed modeling of an
explosive charge employing the sudden release of a highly com-
pressed layer is introduced, and the connection between the source
energy and wave momentum is established. The results of Taylor
for a plate struck by an isolated planar wave are reviewed briefly
in Sec. 3 with additional results for fluid-structure interactions in
air supplementing those of KNR. The role of proximity of the
compressed layer to the plate is studied in Sec. 4. The results for
energy and momentum transfer to the plate are given as a function
of the standoff distance between the plate and the compressed
layer.

2 Isolated One-Dimensional Blast Waves

2.1 Linear Compression Waves in Water. Nonlinear com-
pressibility effects of blast waves propagating in water are rela-
tively small unless the peak pressures are in excess of 100 MPa,
but they do give rise to a shocklike front and followed by expo-
nentially decaying intensity. Valuable fluid-structure interaction
results for water blast waves can be obtained using linear wave
mechanics with cavitation modeled when the pressure in the water

becomes negative. The result of Taylor �1� and Cole �2� for mo-
mentum transfer to a plate struck by a blast wave is such an
example. An isolated planar wave propagating in the positive
x-direction through water is modeled as being exponential in form
with particle velocity v=v0f��� and overpressure �p=�p0f���,
where �=x−ct and

f��� = 0, � � 0
�1�

f��� = e�/�, � � 0

The peak overpressure and particle velocity are related by �p0

=�cv0 with � as the ground state density, c=�B /� as the wave
speed, and B as the compressibility modulus. The decay time as-
sociated with the exponential shape is t0=c /�. Generally, the am-
bient pressure in the water is very small compared with �p0, and
it is neglected in the Taylor analysis. In this case, the total wave
energy/area �E0 is equally partitioned between the energy associ-
ated with the overpressure ��p2 / �2B�dx and the kinetic energy
��v2 /2dx for isolated planar waves of any shape f���. The
momentum/area is I0=��vdx. For the exponential wave, these are

I0 = �p0t0 = �v0�, �E0 = ��p0
2�/B�/2 = �v0

2�/2 �2�

2.2 Nonlinear Compression Waves in Air. The nonlinear
compressibility of air plays an essential role in the evolving shape
changes experienced by intense planar waves. An intense wave
propagating into quiescent ambient air develops a shock front
with a shape that evolves as the wave advances. Because the wave
speed increases with pressure due to nonlinear compressibility, the
front of the wave propagates faster than rear portions of the wave
such that as the wave propagates its width increases and its peak
pressure decreases. Here, selected analytic results from the non-
linear theory of one-dimensional planar waves propagating in air
�5� will be used along with numerical methods �6,7,3� to establish
the results, which follow in the paper. Throughout, air is treated as
an ideal gas with gas constant R and �=1.4 as the ratio of the
specific heats. Artificial viscosity will be introduced in the numeri-
cal simulations.

Let patm, �atm, and catm=��patm /�atm be the pressure, density,
and wave speed in air under ambient atmospheric conditions, re-
spectively. Consider adiabatic propagation of a rightward moving
isolated planar wave with smooth velocity v= f�x� at t=0. For t
�0, prior to shock formation, the distributions of the velocity,
pressure, density and wave speed are governed by the following
nonlinear implicit equations �5�:

v = f�x − �c + v�t�
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p

patm
= � �

�atm
��

= � c

catm
�2�/��−1�

= 	1 +
� − 1

2

v
catm


2�/��−1�

�3�

This result will be used as an initial condition to initiate rightward
moving waves with specified momentum and in some of the nu-
merical simulations.

These results can also be used to establish the momentum and
total wave energy for specific waves and the kinetic and internal
energies at a given instant of time prior to shock formation. The
momentum/area of the wave I0 is independent of time as follows:

I0 = �atmcatm�
−�

� � �

�atm

v
catm

�dx �4�

The kinetic energy/area varies with time such that

KE�t� =
1

2
�patm�

−�

�
�

�atm
� v

catm
�2

dx �5�

The total wave energy/area is also independent of time; it is the
sum of the kinetic energy and excess internal energy �the internal
energy minus the ambient energy�.

�E0 = KE�t� +
patm

� − 1�
−�

� 	 p

patm
− � p

patm
�1/�
dx �6�

which is only valid prior to shock formation and with no dissipa-
tion. For example, for a wave with the velocity distribution at t
=0,

v = v0e−�x/w�2
�7�

numerical integration provides the plots of momentum and total
wave energy as a function of p0 / patm in Fig. 1, where p0 is the
maximum pressure at t=0 related to v0 by Eq. �3�. The ratio of the
kinetic energy to total wave energy at t=0 is plotted as a function
of p0 / patm in Fig. 2. The more intense the wave, the larger is the
kinetic energy as a fraction of the total wave energy. These results
depend on the details of the velocity distribution, but the trends
expressed in term of peak pressure are representative. In Fig. 2,
KE�0� /�E0 does not approach 1

2 for low intensity waves, as seen
for water blasts, because the ambient air pressure cannot be ne-
glected for low intensity air waves.

The numerical method employed to analyze the series of one-
dimensional problems presented below is based on the widely
used von Neumann–Richtmyer algorithm �6�, which incorporates
artificial viscosity in the model of the gas to smoothen the shock
discontinuities and to stabilize the solution procedure. The viscous
contributions are added in a manner, which preserves energy con-
servation. The present formulation follows that are used in the

KNR studies �3� and are detailed in the text �7�. The equations
governing the constitutive behavior of the air are as follows. Let
p, �, and T be the pressure, mass density, and temperature in the
current state, respectively. The internal energy/mass is given by
e=RT / ��−1�. Denote the normal stress contribution due to vis-
cosity by Q such that the ideal gas law is modified as

p = �RT − Q �8�
Following Refs. �3,7�, the artificial viscosity contribution is taken
as Q=0 for �̇�0 and

Q = − �i��b1�̇��2 + b2c��̇���, �̇ � 0 �9�

where �̇ is the strain-rate, �i is the initial density, � is a measure of
the smeared shock thickness related to the current mesh size, c
=����−1�e is the current sound speed, and b1 and b2 are the
dimensionless viscosity coefficients. The time rate of the internal
energy is taken to be consistent with energy conservation �−p�̇

=�ė� as

ė = 	− �� − 1�e +
Q

�

�̇ �10�

The regions on the x-axis occupied by the air at t=0 are divided
into a uniform mesh. The plate is represented as a freestanding
plane with mass/area mp. The description is Lagrangian with the
positions of the material points as independent variables. The
equations for the nonlinear behavior of an ideal gas are discretized
in a manner that conserves momentum and energy. The results
presented in the paper have been computed with between 2000
and 5000 mesh points, depending on the problem, with time steps
set in accord with the stability requirements of the algorithm �3,7�.
The viscosity coefficients were set at b1=2 and b2=1.

2.3 Waves Generated by a Sudden Release of Highly Pres-
surized Air. In numerical simulations, a useful device to simulate
blast waves is to suddenly release a “container” of adiabatically
compressed air that is initially at rest and that then pushes into
quiescent ambient air. To this aim, consider a one-dimensional
layer of air under ambient conditions of width hatm, which is com-
pressed adiabatically with no dissipation to thickness h. The ex-
cess energy/area in air in the compressed layer �E0, excluding the
energy of the air in its ambient state, is

�E0 =
1

� − 1
�p0h − patmhatm� =

patmh

� − 1
	 p0

patm
− � p0

patm
�1/�


�11�

with p0 / patm= �hatm /h��. For example, a layer with hatm=0.27 m
that is squeezed to h=0.01 m produces p0 / patm=100 and �E0
=0.19 MJ /m2.

Fig. 1 Normalized wave energy/area and momentum/area for a
isolated right-ward moving planar wave with an initial peak
pressure p0 in air and a prescribed velocity distribution

Fig. 2 Ratio of kinetic energy/area at t=0 to total wave energy/
area as a function of initial peak pressure for a wave with a
prescribed initial velocity distribution
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Let I�t� be the momentum/area of the rightward moving wave
generated by the sudden release of the compressed air at t=0. The
result will apply to a compressed layer of thickness h and excess
energy/area �E0 bounded by quiescent ambient air on its right and
a rigid wall on the left or, equally, by symmetry, to a symmetri-
cally placed compressed layer of thickness 2h and excess energy/
area 2�E0 bounded by quiescent air on both sides. As the wave
propagates to the right, a shocklike front forms whose steepness is
controlled by the artificial viscosity. The shape of the wave slowly
evolves as described earlier. At any instant the wave energy is

�E =� 	1

2
�v2 + ��e − eatm�
dx �12�

with integration in the current state for 0	x�� and eatm
= patm / ���−1��atm�. The wave energy is constant with �E=�E0
given by Eq. �11�, a feature that is preserved by the numerical
scheme.

With x=0 at the edge of the rigid wall �or at the symmetry
plane�, I=�0

��vdx is the momentum/area of all the air occupying
x
0. By dimensional analysis, one can show that the entire para-
metric dependence for air modeled as an ideal gas is captured by
the dimensionless form

I
��E0m0

= F� p0

patm
,

t

�E0/�p0catm�� �13�

with a dependence on both � and the viscosity coefficients being
implicit. Here, m0=�0h=�atmhatm is the mass/area of the com-
pressed air layer. Initially at t=0 when the compressed layer is
released, I=0, but in a very short period of time
�t / ��E0 / �p0catm��1� an isolated compression wave forms and
propagates to the right. Thereafter, I is nearly constant as can be
seen in Fig. 3�a�. The momentum in the air occupying x
0 is not
strictly constant because of interaction with the wall. After reach-
ing a maximum, I decreases slightly as the pressure at the wall
drops below patm and, subsequently, I increases slightly when the
wall pressure rises again above patm. However, to a very good
approximation, I is constant once an isolated wave emerges, and
the normalized momentum of the wave I /��E0m0 depends essen-
tially only on p0 / patm. This dependence is plotted in Fig. 3�b� with
I evaluated at its minimum value following the first maximum.
The success of the particular normalization is evident in that
I /��E0m01 for intense “explosions.” Included in this figure is

the result obtained by a linearized analysis in which p0 / patm is
perturbed about unity as follows:

I
��E0m0

=�1

2
� p0

patm
− 1� �14�

These results are not new, although the normalization given
above seems to be particularly useful for the present objectives.
The power of dimensional analysis to reduce the parametric de-
pendencies is laid out in texts such as Ref. �8�, and related results
have been presented in various sources including Refs. �9,10�.

3 Interaction Between Intense Isolated Waves and a
Freestanding Plate

Kambouchev et al. �3� extended Taylor’s linear theory of fluid-
structure interaction in water to intense planar air blasts. Formulas
for the momentum transfer to a freestanding plate were developed
and calibrated by accurate numerical simulations. These authors
generated a rightward moving wave by releasing a highly com-
pressed layer well to the left of the plate. The wave propagates,
forms a shock, and evolves in shape before striking the plate. The
authors fit an exponential pressure distribution to the wave p
= p0e−t/t0 with peak pressure p0 and decay time t0, in the period of
time when the wave passes the plate �simulated with the plate
removed�. The interaction of the wave with the plate is computed
with emphasis on the maximum momentum/area I transmitted to
the plate as a function of the wave characteristics at the instant the
plate is impacted.

Here, the KNR approach is modified in several ways. �1� The
initial condition is taken as a rightward moving isolated wave �3�
with precisely defined momentum/area I0 and wave energy/area
�E0. �2� The momentum/area transmitted to the plate I is normal-
ized by the incident momentum I0 and it is conjectured based on
numerical simulations that the limit for a massive plate is I=2I0
for all incident blast waves. �3� The results are presented in di-
mensionless form using invariant measures I0 and �E0 of the
wave intensity. �4� The plate interacts with ambient air on the side
opposite the blast, which KNR neglects.

3.1 Wave Impinging on a Massive Plate. For massive plates
�mp→��, many computations have been performed for different
initial wave shapes �3� launched at a wide range of distances from
the plate for initial pressure peaks p0 ranging from several times
patm to 1000patm. In all cases, it has been found that to within a

Fig. 3 Normalized momentum/area of rightward traveling wave produced by an initially
compressed air layer with excess energy/area �E0, mass/area m0, and pressure p0. „a…
Momentum/area versus time for two initial pressures. „b… Momentum/area of the emerged
wave.
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few tenths of a percent the momentum/area transferred to the
plate, or equivalently, the impulse/area acting on the plate is I
=2I0 with I0 as the momentum/area of the incident wave �4�.
Concomitantly, within the same precision the momentum/area of
the reflected wave is −I0. As is well known, linear theory �e.g.,
Taylor’s theory� gives precisely I=2I0 for the limit of massive
plates. Based on the above findings, it seems reasonable to con-
jecture that I=2I0 holds for compressible air waves as well. The
very small difference between the numerical results determined
here and I=2I0 is likely due to errors associated with the numeri-
cal method, but this has not been established.

To our knowledge there is no proof of this result for nonlinear
compressible waves, nor does it appear to have been remarked
upon in the literature. The fact that the reflected wave has
momentum/area −I0 is obviously consistent with equal and oppo-
site propagating waves colliding subject to conservation of mo-
mentum and energy. By symmetry, this problem is the same as the
wave impacting a massive plate. Moreover, the simple result I
=2I0 would be expected from a statistical mechanical model of an
ideal gas with molecules represented as hard spheres that undergo
perfectly elastic collisions. The constitutive equations of the con-
tinuum model of an ideal gas are derived from such a model.
Nevertheless, it is not obvious that the solution to the full set of
continuum equations governing the ideal gas preserves this simple
result, especially with inclusion of artificial viscosity.

3.2 Wave Impinging Upon a Plate of Finite Mass/Area mp.
A rightward propagating wave prescribed by Eq. �7� is launched at
t=0 in the direction of a plate whose surface directed toward the
blast is initially located at x=d, with d /w sufficiently large such
that there is no interaction between the plate and the wave at t
=0. Ambient air exists on both sides of the plate. The region of the
x-axis is taken to be sufficiently large such that no reflected waves
impact the plate from either the left or the right. The plate accel-
erates upon impact of the blast wave, attaining a maximum veloc-
ity, and then begins a slow deceleration due to the fall-off in
pressure on the blast side and the buildup of pressure on the back
side of the plate as it plows into the air on that side. The objective
is to determine the maximum momentum/area I transmitted to the
plate as related to the incident momentum I0.

One set of independent parameters determining I are mp, v0, w,
d, patm, and �atm, along with � and the viscosity coefficients,
which will be regarded as fixed. While catm=��patm /�atm is not
independent, it can be used when convenient. The momentum/
area I0 and wave energy/area �E0 of the incident wave defined in
Eqs. �4� and �6� can be used in place of v0 and w. These variables
have the advantage that they are invariant measures of the incident
wave intensity in the sense that they remain constant as the wave
propagates and, moreover, they are less tied to the specificity of
the initial launching conditions. Based on the set of independent
variables—mp, I0, �E0, d, patm and �atm—it follows from dimen-
sional analysis that the general functional dependence of the
maximum momentum/area imparted to the plate I depends on
three dimensionless parameters as

I

I0
= F��,

�E0

catmI0
,
patmd

catmI0
� �15�

with

� =
1

2

I0
2

�E0mp
�16�

The parameter � has been defined in terms of the wave invari-
ants such that it coincides with Taylor’s �1� fluid-structure inter-
action parameter for linear exponential waves �1� using the ex-
pressions in Eq. �2�, i.e., �=�� /mp or, equivalently, �= t0 / tp with
tp�mp / ��c�. Taylor’s result for the maximum momentum im-
parted to the plate in a water blast is

I

I0
= 2��/�1−�� �17�

which is included in Fig. 4. In Taylor’s water blast model, there is
no restraint of water or air on the back side of the plate. The
maximum momentum of the plate is attained when the pressure on
the front side of the plate becomes negative, interpreted as the
onset of cavitation.

Plots of I / I0 as a function of the generalized � are presented in
Fig. 4 for a range of initial conditions specified by the other two
dimensionless parameters. An illustration in dimensional terms is
included in the figure caption. It is seen that the fraction of the
incident wave momentum transferred to the plate is primarily de-
pendent on � with importance dependence on the other two pa-
rameters as well. Relatively small changes in �E0 / �catmI0� are
associated with large changes in p0 / patm. In spite of the differ-
ences in modeling, the trends in Fig. 4 are similar to the more
extensive results presented by KNR �3�, who used other measures
of the incident wave intensity evaluated at the moment of impact
and who also developed formulas that accurately reproduce their
numerical results. Specifically, KNR generalized the Taylor pa-
rameter to intensify air blasts according to �= t0 / tp

� where tp
�

�mp / ��sUs� with �s as the density directly behind the shock front
and Us as the velocity of the shock front, both measured at the
instant just before the wave hits the plate.

Figure 4 provides a unified way to view fluid-structure interac-
tion between blast waves in water and air and a freestanding plate.
Substantial reductions in momentum transfer due to fluid-structure
interaction will only be achieved if I0

2 /�E0 is comparable to mp.
For relatively thick metallic plates, this will only occur for very
intense air blasts. In air blasts, most plates acquire the maximum
possible momentum/area 2I0.

An advantage of using � as defined in Eq. �16� to describe the
fluid-structure interaction behavior is that this dimensionless vari-
able is defined using invariants of the incident wave, whereas, for
example, the choice �= t0 / tp

� favored by KNR must be determined
in some manner �computation or test measurements� at the instant
the wave strikes the plate. For a wave launched with specific
momentum/area and excess energy/area, �= t0 / tp

� depends on the
distance the wave travels to reach the plate. Conversely, a disad-
vantage of the present choice of � in Eq. �16�, as opposed to that
of KNR, is that the present choice does not reflect the fact that the
intensity of the traveling wave diminishes with distance traveled.
This deficiency is due to the fact that the wave energy �E0 defined
initially by Eq. �6� and subsequently by Eq. �12�, includes internal

Fig. 4 Ratio of momentum/area transmitted to a plate to the
momentum/area of the incident wave in terms of the general-
ized Taylor FSI parameter � in Eq. „16… and the two dimension-
less parameters characterizing the wave. The values
�E0 / I0catm=1 and 1.1 correspond to a wave „7… released with
w=0.05 m with p0 /patm=16 and 127, respectively, at three dis-
tances from the plate „d=0.4 m, 0.7 m and 1.2 m.
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energy �heat� in the “quiescent” air left behind the propagating
wave. In the computational model, the remnant internal energy is
set by the viscosity coefficients. In the absence of viscosity, the
remnant energy is set by jump conditions across the shock. Thus,
while the wave energy �E0 is conserved, it does not faithfully
measure the intensity available to accelerate the plate after the
wave has traveled distances sufficient to leave behind an appre-
ciable fraction of its initial energy as heat. These trends are made
explicit in Fig. 4 through the dependence on patmd / �catmI0�.

In conclusion, it has been noted that there are several ways to
generalize Taylor’s fluid-structure interaction parameter � for in-
tense air blasts. The choice identified by KNR has the distinct
advantage that it provides a measure of the relevant wave intensity
at the instant the wave strikes the plate. As a consequence, it
appears to reduce the dependence of I / I0 on only one dimension-
less parameter in addition to �, assuming wave has propagated far
enough to have evolved into an exponential shape.

4 Energy and Momentum Imparted to a Plate by a
Highly Compressed Layer of Air

4.1 The Role of Backing to the Compressed Air Layer for
Plates With Zero Standoff. Consider the initial configurations in
Fig. 5 wherein an adiabatically compressed air layer such as that
introduced in Sec. 2.3 is released at t=0 and accelerates a plate in
direct contact with the layer to the right. Two cases are consid-
ered: �a� no backing on the left of the layer other than ambient air
and �b� rigid backing on the left. The plate flies into ambient air
on its right. A specific example for the case of rigid backing in
Fig. 6 shows the time evolution of the kinetic energy/area of the
plate until the point that it attains its maximum velocity. In this
example, almost 80% of the initial excess energy �11� in the com-
pressed layer �E0 is transferred to the plate. The figure also shows
the evolution of the excess energy in the air to the left and right of
the plate �E, defined as the sum of the kinetic energy and the
excess internal energy in Eq. �12�. The maximum velocity is at-
tained after the plate has plowed into ambient air on its backside
creating a pressure wave to the right of the plate.

It is no surprise that the role of the backing is enormous, as seen
in Fig. 7. In this figure, the maximum kinetic energy/area trans-
ferred to the plate KE is normalized by the initial excess energy in
the compressed layer �E0 and plotted against mp /m0. As in Sec.
2.3, m0=hatm�atm=h�0 is the mass/area of the air in the com-
pressed layer. The only other dimensionless parameter in this
problem �other than � and the viscosity coefficients� is p0 / patm
= �hatm /h��. When the compressed layer has rigid backing, the
plate acquires a significant fraction of the energy of the com-
pressed layer, depending in detail on mp /m0 and p0 / patm as plotted
in Fig. 7�b�. With backing, highly compressed initial layers

�p0 / patm�100� acting on relatively massive plates �mp /m0�10�
transmit 80% or more of their energy to the plate. The maximum
momentum/area transmitted to the plate can be obtained from I
=�2mpKE. By contrast, a plate launched by a compressed layer
with no backing acquires a small fraction of �E0 �Fig. 7�a��.

4.2 Finite Standoff d With Rigid Backing. The effect of a
finite standoff distance d between the plate and the compressed
layer is now considered, as depicted in Fig. 8. The compressed air
layer has rigid backing. At t=0, ambient air exists between the
compressed layer and the plate and also to the right of the plate.
The normalized maximum kinetic energy acquired by the plate
KE /�E0 is computed as a function of the standoff distance. In
addition to the two dimensionless parameters introduced for the
case of zero standoff p0 / patm and mp /m0, one new dimensionless
standoff parameter comes into play. One possibility is d /hatm and
another is patmd /�E0; these parameters can be expressed in terms
of one another using the other two dimensionless parameters. The
choice d /hatm is preferred because hatm reflects the distance over
which the highest pressures in the compressed layer will still per-
sist as it expands. The results for one set of parameters p0 / patm

Fig. 5 Configuration and notation for simulations releasing compressed air
layer at t=0 with no standoff distance to plate. „a… No backing to com-
pressed layer. „b… Rigid backing to compressed layer.

Fig. 6 An example for the case of the compressed layer with
rigid backing and a plate with zero standoff distance. The evo-
lution of the several components of the energy of the system
with time is plotted until the time when the plate acquires its
maximum velocity. The energy/area �E in the air to the left and
right of the plate is the sum of the kinetic energy and the ex-
cess internal energy as defined in Eq. „12…. As noted from the
top curve, the numerical method conserves energy to a high
degree of accuracy. In this example, value for mp is equivalent
to a 1 cm thick steel plate; the maximum velocity attained by
the plate is 120 m/s.
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=100 and mp /m0=100 are plotted as a function d /hatm in Fig. 9.
The exceptionally strong effect of the standoff distance is evident,
as will now be discussed.

The kinetic energy transferred to the plate drops dramatically as
the standoff distance increases. For the example given in the cap-
tion of Fig. 9 with a specific choice of dimensions, the kinetic
energy transferred to the plate is already reduced substantially at
the standoff d�hatm=0.33 m. The limit for large standoff labeled
in Fig. 9 is readily understood using the result in Sec. 2.3 for the
momentum of a wave generated by the release of the compressed

air layer in a semi-infinite region in conjunction with the fluid-
structure interaction results in Fig. 4. With reference to Fig. 3�b�,
note that the momentum/area of the rightward moving wave gen-
erated by a compressed layer with p0 / patm=100 is I
�1.05��E0m0, assuming the wave has been propagated suffi-
ciently far to be fully developed with a well defined momentum.
Assuming this is the case, identify I with the momentum/area I0 of
the wave hitting the plate and �E0 as the wave energy/area. By
Eq. �16�, ��0.55�m0 /mp�=0.0055 and, thus, from Fig. 4, the
momentum/area transferred to the plate is nearly 2I0

�2.1��E0m0. Then, because the kinetic energy/area of the plate
is

KE = �2I0�2/�2mp� � 2.2�E0�m0/mp�
the large standoff limit is

KE

�E0
� 2.2

m0

mp
�18�

For the set of parameters in Fig. 9 this limit is 0.022. The example
in Fig. 9 is representative for any relatively massive plate �i.e.,
mp /m0�10� in any intense air blast.

The standoff effect illustrated in Fig. 9 is one-dimensional. It is
quite distinct from the more easily understood effect of standoff in
two and three dimensions wherein the blast wave intensity, as
measured by the momentum/area and/or energy/area, diminishes
inversely as a function of distance as the wave propagates away
from the source. In the one-dimensional situation considered here
with backing and no standoff, a large fraction of the air layer
energy is converted directly into the kinetic energy of the plate as
the layer expands against the plate �c.f., Fig. 7�b��. At the other
extreme, for large standoff, the energy in the compressed air layer
is first converted into the energy of the propagating wave. When
this wave hits the plate, a very small fraction of the wave energy
is transferred to the plate because the wave bounces off the plate
retaining much of its energy. In other words, with sufficient stand-
off �e.g., d /hatm�1� for intense waves �p0 / patm�10� and rela-
tively massive plates �mp /m0�10�, most of the energy of the
initial compressed layer remains trapped between the wall and the
plate in the form of kinetic and internal energies of the air with
waves reverberating back and forth between the wall and the
plate.

5 Concluding Remarks
The study focused on one-dimensional waves in air modeled as

an ideal gas. The main findings are as follows.

�a� For intense waves in air initiated by the sudden release of
an adiabatically compressed layer, a relatively simple re-

Fig. 7 Ratio of the maximum kinetic energy/area transmitted to plate to the initial excess
energy/area in the compressed layer for the case with no standoff between the plate and the
layer. „a… No backing to the compressed layer. „b… Rigid backing to the compressed layer.

Fig. 8 Configuration for simulations of energy transferred to
plate with standoff d. The compressed air layer has rigid
backing.

Fig. 9 The maximum kinetic energy/area transmitted to plate
as a function of the standoff distance between the plate and the
compressed air layer plotted for a specific set of dimensionless
parameters. For reference, a set of dimensional parameters
that corresponds to these results is: hatm=0.33 m, h=0.012 m,
�E0=0.24 MJ/m2, mp=40 kg/m2, m0=0.4 kg/m2 and p0
=10.5 MPa. The limit for large standoff is discussed in the text.

051307-6 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



lation exists between the energy in the compressed layer
and the momentum of the ensuing wave as presented in
Fig. 3.

�b� A massive plate struck by an isolated wave acquires
twice the momentum of the incident wave. It remains to
establish this result theoretically—it has been verified to
a high degree of numerical accuracy in this paper.

�c� A presentation is given of fluid-interaction curves for the
fraction of the momentum transferred to a freestanding
plate in intense air blasts using invariants of the impact-
ing wave �Fig. 4�. While more comprehensive results
have been presented by KNR �3� using other variables to
describe the incident wave, the results given here provide
additional insights to the interaction and have certain ad-
vantages stemming from the invariance of the param-
eters.

�d� The enormous effect of backing to the compressed layer
on the energy transmitted to a plate in direct contact with
the layer is quantified.

�e� Standoff between the plate and the compressed layer also
has a very large effect in a one-dimensional setting. If the
standoff is sufficiently large such that a well developed
wave forms prior to impacting the plate, relatively little
of the initial energy in the compressed layer is transmit-
ted to the plate.
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The Crushing Characteristics of
Square Tubes With Blast-Induced
Imperfections—Part I:
Experiments
This two-part article presents the results of experimental and numerical work on the
crushing characteristics of square tubes, with blast-induced imperfections, subjected to
axial load. In Part I, the experimental studies are presented. The approach in the studies
involves creating imperfections on opposite sides at midlength of a square tube by means
of localized blast loads to create three types of imperfections; nontouching domes, re-
bound domes, and capped domes. These imperfections change the geometry and the
material properties in the midsection of the tubes and hence affect the crushing charac-
teristics. While the blast-induced imperfections enhance the energy absorption charac-
teristics of the tubes they also affect the lobe formation process. In Part II, the finite
element package ABAQUS/EXPLICIT v6.5-6 is used to construct a 1

2 symmetry model by
means of shell and continuum elements to simulate the tube response to the localized
blast loads followed by dynamic axial loading in the form of a rigid mass impacting at a
specified initial velocity. The hydrodynamic code AUTODYN is used to characterize the
localized blast pressure time and spatial history. The predictions show satisfactory cor-
relation with experiments for both crushed shapes and crushed distance.
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1 Introduction
If there is to be such an event as an ideal crash it would be no

crash at all. However, with the ever-increasing demand for mass
transport the potential for accidents is always on the rise. Accord-
ing to the 2004 World Health Organization report on road traffic
injury prevention �1� approximately 1.2 million people are killed
and 50 million people are injured in road traffic crashes each year.
Nonetheless, in the event of a crash one wants the best possible
chances of survival, and enduring a crash is all about absorbing
kinetic energy. Tubular structural members of different geometries
and materials have been widely established as energy absorbers as
they have the ability to absorb and convert a large amount of
kinetic energy into plastic strain energy when deforming under
compression as in impact situations. These extruded thin-walled
structures can sustain high impact loads with large geometric de-
formations, strain hardening effects, strain-rate effects, tempera-
ture effects, and various interactions between different deforma-
tion modes �such as bending and stretching�. The studies on the
behavior of thin-walled structures were initiated in the 1960s by
Pugsley and Macaulay �2� and Alexander �3�. Since then, there
has been continued interest on the axial crushing behavior of these
structures, overviewed by numerous authors—Reid �4�, Alghamdi
�5�, and Jones �6�.

When loaded axially, these thin-walled structures fail into two
distinct collapse modes, either Euler buckling or progressive
buckling mode. While these collapse modes are highly influenced
by the tube material and geometries �length, cross section, and
wall thickness� the structure’s response also depends on the load-
ing conditions, boundary conditions, imperfections �also referred

to as initiators or triggers�, and fillers. In some cases a transition
between these two modes of collapse is observed. For crashwor-
thiness applications, the idea is to absorb a large amount of kinetic
energy in a controllable and predictable manner or at a predeter-
mined rate. The progressive buckling mode is hence more desir-
able than the Euler buckling mode.

When a tubular structure is crushed in progressive buckling
mode, its initial peak force is greater than the subsequent peak
force developed. For crashworthiness applications, this initial
peak force is highly undesirable. The use of imperfections to ini-
tiate a specific collapse mode, stabilizing the collapse process and
reducing the peak load magnitude, as explored by Thornton and
Magee �7�, has become very “common.” These imperfections, can
be either material or/and geometric modifications to the structure.
Chung Kim Yuen and Nurick �8� recently presented an overview
of the different imperfections used to improve crushing character-
istics of tubular structures.

Examples of material imperfections are locally annealed re-
gions generated by concentrated heating, or the heat-affected zone
generated by a weld. Types of geometric initiators include
naturally-formed and mechanically-induced modifications, struc-
tural additions, or deletions on the component and, for composite
components, special end configurations and inserts. The imperfec-
tions based on the geometric modification of the component have
the advantages of being visually detectable and controllable by
dimension adjustment. Numerous authors have explored the ef-
fects of different types of imperfections. For instance, Langseth
et al. �9�, Lee et al. �10�, DiPaolo et al. �11�, and Mamalis et al.
�12� have used triggering dents or parallel grooves to initiate the
collapse of axially loaded thin-walled structures. Gupta and co-
worker �13,14�, Toda �15�, Kormi et al. �16�, Marshall and Nurick
�17�, and Arnold and Altenhof �18� have reported on thin-walled
structures with circular cut-outs.

In crashworthiness applications, other types of imperfections,
such as triggers, cut-outs, and dents have to be preinduced, con-
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sequently weakening the structure. Explosives, as used for air bag
deployment in case of car crashes, can be applied to generate
imperfections in tubular structures �car chassis� almost instanta-
neously. Thus helping to reduce crush peak forces. However, de-
spite similar loading conditions, the response to the explosive
charges does not necessarily result in imperfections of the same
magnitude, which may lead to asymmetry. The latter is not ideal
for crashworthiness because the Euler failure mode can be in-
duced as opposed to progressive buckling.

This paper reports on the results of an investigation into the
response of extruded square tubes with blast-induced imperfec-
tions subjected to dynamic axial impact load. The tube structure is
weakened as a result of the change in geometry from the blast.
The large inelastic response of the tube to the explosions occurs at
high strain rates in a localized area, consequently affecting the
material properties in that region. The combined effects of the
change in geometry and material properties are investigated by
dropping the different masses at different velocities to investigate
the response of tubes to various impact energies and velocities
after the explosions. A few quasistatic tests are also carried out to
investigate the force-displacement characteristic.

2 Experiments

2.1 Blast Loading of Tubes. The blast loading experiments
involve using small quantities of explosive positioned on the side
of the square tubes to generate a localized blast load. The tubes,
made from mild steel of 304 MPa in yield stress, 50�50 mm2 in
cross section, 1.5 mm in nominal thickness and 350 mm in length,
are attached to a ballistic pendulum, as shown in Fig. 1, and the
resulting impulse due to the explosive charge is recorded. The
method of creating an impulsive load using a plastic explosive and
the measurement of the impulse using a ballistic pendulum is
similar to that used in many previous experimental investigations.
The ballistic pendulum is the same as that used by Chung Kim
Yuen and Nurick �19,20�, Farrow et al. �21�, Jacob et al. �22�,
Langdon et al. �23� and Nurick and co-workers �24–26� involving
explosive loading on plates. This experimental technique has been
proven to give consistent and reproducible results. The tests on the
ballistic pendulum are carried out with a view to obtain an em-
pirical relationship between the mass of the explosive and the
impulse.

The square tubes are centrally loaded using plastic explosive
�PE4�, which has a burn speed of approximately 8200 m /s �27�.
This explosive is laid out on a 14 mm thick polystyrene foam pad,
which has the same width as the tube and is 100 mm in length.
The explosive is spread evenly onto the polystyrene foam pad
over the load diameters equivalent to one-third and one-half of the
tube width �17 mm and 25 mm�. A 1 g leader of explosive hold-
ing the detonator is attached to the center of the disk of explosive.
The foam pad disintegrates up on detonation, but attenuates the
shock transmitted to the square tube and prevents spallation of the
specimen. The mass of explosive �ME� of the leader is kept con-
stant for all the tests. Differing masses of explosives, ranging from
2 g to 6 g, are used, giving different impulses, resulting in differ-
ent tube responses. The tube and blast load configuration is illus-
trated in Fig. 1.

Results from these blast tests together with additional data from
past experiments �22,23,28,29� on localized blast loading �explo-
sive mass ranging from 2 g to 6 g� of quadrangular structures are
plotted in Fig. 2 with a view to obtaining an empirical relation-
ship. Irrespective of the load diameter, there is a general trend that
impulse increases with increasing mass of explosive. The empiri-
cal relationship shown in Eq. �1� is calculated from a least squares
regression analysis. The equation is a good fit for the data, with a
R2 correlation coefficient of 0.91 for 200 data points. The resultant
impulse is approximately twice the mass of explosive. However,
deviations of up to 30% are observed in the experimental data. An
error of �1 Ns to the empirical relationship is plotted in Fig. 2.

I = 2.0ME0.97 � 2.0ME �1�

where I is the impulse �N s� and ME is the mass of the explosive
for 1 g�ME� 6 g.

To create the blast-induced imperfections on opposing sides of
the tube, two equal masses of explosives having the same load
diameter are placed at the center on opposite sides of the square
tube clamped onto an anvil. The explosive charges are always
placed on the sides of the tube that do not contain the welded
seam. The two detonators for the two explosive loads are con-
nected to the same triggering wire for simultaneous blast.

The response of the tube to the localized blast loads show that
the square tubes are affected in the central region �150 mm in
length� and essentially exhibit two modes of failure: Mode I fail-
ure �permanent large deformation� and Mode IIc failure �tensile

Fig. 1 Schematic and photo of the blast loading setup
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tearing at in the central area of the tube where the load is
applied—a fragment—in the shape of a disk �also referred to as
cap� is released in the central area� as defined by Chung Kim Yuen
Nurick �20�, Langdon et al. �23�, and Nurick and Radford �25� for
plate response to localized blast load. Other phases in the Mode I
and Mode II failure region are also exhibited. These include Mode
Itc, which designate thinning in the central area of the tube side
where the fragment is about to be released, and Mode IIc* which
is defined where partial tearing of the central area of the tube’s
side. Three different types of imperfections, non-touching domes,
rebound domes, and capped domes, shown in Fig. 3, are induced.
The masses of explosive used �impulse� to induce these imperfec-
tions are listed in Table 1.

�a� Simple Mode I (nontouching domes). The opposite tube
sides plastically deform in an oval dome shape without
touching each other.

�b� Rebound domes. The opposite tube sides plastically
deform to such an extent that they make contact and
rebound.

�c� Capped domes (Mode IIc). The opposite tube sides plas-
tically deform with a fragment �also referred to as cap�,
in the shape of a disk, and is released in the central area
of the tube. This type of imperfection is similar to a cir-
cular cut-out with the region around the capped hole plas-
tically deformed into a dish shape.

2.2 Quasistatic Axial Loading. The quasi-static crushing of
the square tube is highly influenced by the geometry, boundary
conditions, and material properties. A small set of experiments is
carried out at a quasistatic rate on as-received and induced imper-
fections �blast and circular cut-outs� square tubes of the cross
section 50�50 mm2. These tests are performed, on a 200 kN
rated Zwick testing machine that records the axial load-
displacement histories at a constant preset cross-head speed, to
provide a baseline to assess how the square tube would fold rela-
tive to their imperfections. The square tubes are 350 mm in
length. The lower 50 mm end of the tube is fixed by means of a
clamping rig, leaving a length of 300 mm to deform. The clamp-
ing rig is placed onto the moving bed of the test machine in such
a way that the specimen is carefully positioned at the center of the
cross-head with its end faces exactly perpendicular to the longitu-
dinal axes. The specimen is then sandwiched against a flat station-
ary steel plug, which is parallel to the bottom clamping device to
ensure a uniform distributed load. Fig. 4 shows a schematic of the
quasistatic test setup.

Fig. 2 Graph of the impulse versus mass of the explosive for ME ranging from 1 g to 6 g

Fig. 3 Photograph showing the different modes of
imperfections

Table 1 Range of masses of the explosive to induce
imperfections

�17 mm �25 mm

Simple Mode I
�nontouching domes�

2.0–3.5 g �6.7 N s 2.0–3.0 g �5.8 N s

Rebound domes N/A 3.5 g 6.7 N s
Capped domes
�Mode IIc�

4.0–4.75 g �7.6 N s 4.5 g �8.6 N s
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2.2.1 As-Received Square Tubes. Tests on the as-received
tubes, listed in Table 2, are carried out at various cross-head
speeds ranging from 15 mm /min to 90 mm /min. Tests on tubes
with imperfections are performed at a constant cross-head speed
of 15 mm /min. It is not considered necessary to vary the cross-
head speed to crush the tubes with imperfections due to the mini-
mal difference in buckling load. Crushing is stopped when the
crushed distance reached 205 mm or when the collapse behavior
becomes highly irregular.

Within the cross-head speed range, the ultimate buckling load
and mean crushing load do not vary significantly �that is, within
experimental variation�. A nominal ultimate buckling load of
106.9�5 kN and a nominal mean crushing load of 34.3�3 kN
are obtained for as-received square tubes. The load efficiency

�eL= Pult / Pm� average, as defined by Arnold and Altenhof �18�, is
30.66%. It is also observed in Fig. 5 that the tubes crush progres-
sively in a symmetric mode irrespective of the cross-head speed.

The sequential development of lobes in an as-received mild
steel square tube subjected to a quasistatic axial load is shown in
Fig. 6 with its corresponding axial force-displacement curve
shown in Fig. 7. Sublabels �a�–�e� shown in Fig. 7 correspond to
the different stages of the lobel development sublabelled �a�–�e� in
Fig. 6. An ultimate peak load of 105.6 kN is reached prior to the
formation of the first lobe. Thereafter, a repeated pattern of load-
displacement behavior, which is associated with the sequential
development of the lobe is exhibited, as expected. These subse-
quent “peak loads” are nominally 50% of the ultimate peak load.
Each pair of peaks is associated with the development of a lobe.
The mean crush load, calculated using the total area under the
force-displacement curve divided by the crushed distance, is
37.39 kN.

Fig. 5 Photograph showing as-received square tubes crushed quasistatically in the axial direction „increasing cross-head
speed from left to right…

Fig. 6 Photograph showing the transient response of the quasistatically
crushed as-received square tube

Fig. 4 Schematic of the quasistatic test setup

Table 2 Quasistatic crush test results for as-received square
tubes

Specimen Imperfection
CHS

�mm/min�
Pult

�kN�
Pm

�kN�
eL

�%�

Q001 None 15 103.37 32.73 31.66
Q002 None 15 104.52 36.38 34.81
Q003 None 15 105.58 37.39 35.41
Q004 None 30 107.34 34.99 32.59
Q005 None 45 109.62 33.06 30.16
Q006 None 60 104.75 33.52 32.00
Q007 None 75 111.12 33.17 29.85
Q008 None 90 108.85 33.36 30.65

Average 106.9 34.3 30.7
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2.2.2 Induced Geometric Imperfection Square Tubes. Table 3
lists the results of the quasistatic tests performed on square tubes
with induced imperfections. All the imperfections are induced us-
ing an explosive except for tubes with circular cut-outs.

2.2.2.1 Square tubes with circular cut-outs. The progressive
development of lobes in a 50 mm square tube that has two holes
cut-out subjected to quasistatic axial load is shown in Fig. 8. The
holes are 12.5 mm in diameter and are located at the center of two
opposite sides of the tube. The first lobe is developed at the center
of the tube where the circular cut-outs are located. Thereafter,
the tube buckles progressively toward the top end and later
progresses toward the clamped end. Figure 9 shows its corre-
sponding axial force-displacement curve obtained from the Zwick
testing machine. Sublabels �a�—�h� shown in Fig. 9 correspond to
the different stages of the lobel development sublabelled �a�–�h�
in Fig. 8.

2.2.2.2 Square tubes with simple Mode I imperfections. Fig.
10 shows the transient response of a square tube with simple
Mode I imperfections to a quasistatic axial load. The domes, a
result of detonating two 3 g charges of explosives with a load
diameter of 17 mm on two opposite sides of the tube, have a
nominal depth of 16.5 mm. The tube starts to fold at its midlength
where the dents are formed. Subsequent folds are developed in the
top half of the tube before progressing at the lower end of the
tube. The first lobe �at the tube midlength� is larger than the sub-

Fig. 7 Typical axial force-displacement graph for the quasis-
tatically crushed as-received square tube

Table 3 Quasistatic crush test results for induced geometric imperfection square tubes

Specimen Imperfection
CHS

�mm/min�
Hole diameter

�mm�
Pult

�kN�
Pm

�kN�
eL

�%�

Q009 Circular cut-out 15 12.5 87.76 30.16 34.37
Q010 Circular cut-out 15 12.5 86.88 28.92 33.29

Average 87.3 29.5 32.8

Specimen
Imperfection

�blast�
CHS

�mm/min�
Dent depth

�nominal� �mm�
Pult

�kN�
Pm

�kN�
eL

�%�

S027 Dent 15 16.39 76.58 29.04 37.93
S046 Dent 15 16.55 76.11 31.54 41.44
S071 Dent 15 16.85 77.38 31.81 41.11
S070 Dent 15 17.42 76.27 32.51 42.62
S029 Dent 15 18.82 76.29 31.23 40.93
S073 Dent 15 21.02 73.42 30.30 41.27

Average 76.0 31.1 40.7

Specimen
Imperfection

�blast�
CHS

�mm/min�
Dent depth

�nominal� �mm�
Pult

�kN�
Pm

�kN�
eL

�%�

S077 Rebound 15 23.20 61.13 29.48 48.23
S041 Rebound 15 23.47 68.80 — —
S025 Rebound 15 23.56 71.38 34.31 48.07
S078 Rebound 15 23.59 56.68 28.44 50.18

Average 64.5 30.8 48.8

Specimen
Imperfection

�blast�
CHS

�mm/min
Dent depth

�nominal� �mm�
Pult

�kN�
Pm

�kN�
eL

�%�

S040 Rebound
�anneal�

15 24.53 57.40 27.03 47.1

Specimen
Imperfection

�blast�
CHS

�mm/min�
Cap diameter

�nominal� �mm�
Pult

�kN�
Pm

�kN�
eL

�%�

S045 Circular cap 15 11.5 71.83 32.40 45.10
S072 Circular cap 15 11.5 68.68 28.97 42.18

Average 70.3 30.7 43.6
S076 Oval cap 15 16 53.53 27.00 50.43
S079 Oval cap 15 16 54.03 25.19 46.62

Average 53.8 26.1 48.5
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sequent lobes as the domes collapse to touch each. Figure 11
shows the axial force-displacement curve obtained from the crush
of the square tube shown in Figure 10. Sublabels �a�–�h� shown in
Figure 11 correspond to the different stages of the lobe’s develop-
ment sublabelled �a�–�h� in Figure 10. An ultimate peak load of
76.1 kN is reached prior the formation of the first lobe. Thereafter,
a repeated pattern of the load-displacement behavior of different
load magnitudes which is associated with the sequential develop-
ment of the lobe is exhibited. The mean crush load is 31.54 kN.

2.2.2.3 Square tubes with rebound imperfections. Figure 12
shows the transient folding mechanism of a square tube that has
been subjected to two charges of 3.5 g explosive with a load di-
ameter of 25 mm inducing rebound imperfections, with a maxi-
mum deflection of 23.5 mm. When the axial load is applied, the
tube starts crushing at the imperfections. The rebounded domes

touch each other forming two outward facing dimples. The first
lobe is then developed at the top of the imperfection. Subsequent
lobes progress to the top of the tube before continuing to the lower
end of the tube. If the load is continually applied beyond the
“stable” buckling, the crushing mode of the tube changes from
progressive to Euler �tending to buckle to one side�.

Figure 13 shows the axial force-displacement curve obtained
from the crush of the square tube shown in Fig. 12. Sublabels
�a�–�g� shown in Fig. 13 correspond to the different stages of the
lobe’s development sublabelled �a�–�g� in Fig. 12. The ultimate
peak load, 71.38 kN, is reached before the formation of the first
lobe. Thereafter, a repeated pattern of load-displacement behavior,
which is associated with the sequential development of the lobe is
exhibited. Unlike the as-received tube under a uniform axial load,
the repeated peak loads for the tube with rebound imperfections
are nominally 80% of the ultimate peak load. The mean load in
this case is 34.31 kN.

2.2.2.4 Square tubes with capping imperfections. Figure 14
shows the transient folding mechanism of a square tube that has
been subjected to two charges of 4.5 g of explosive with a load
diameter of 17 mm, inducing capping imperfections. The holes
are nominally 11.5 mm in diameter. When the axial load is ap-
plied, the tube starts crushing at the capped domes causing the two
deformed sides to touch each other. The first lobe is then formed
at the top of the imperfections. The lobe formation then progresses
to the lower end of the tube. Any asymmetry in the tube imper-
fections causes the tube to buckle irregularly �in Euler mode�.

The axial force-displacement curve obtained from the crush of
the square tube shown in Fig. 14 is plotted in Fig. 15. Sublabels
�a�–�g� shown in Fig. 15 correspond to the different stages of the
lobe’s development sublabelled �a�–�g� in Fig. 14. The ultimate
peak load, 71.8 kN, is again reached before the formation of the
first lobe. No clear repeated pattern of the load-displacement be-
havior, as observed for the as-received tube, is noticeable despite

Fig. 8 Photograph showing the transient response of the quasistatically crushed square tube
with circular cut-outs

Fig. 9 Typical axial force-displacement graph for the quasis-
tatically crushed square tube with circular cut-outs

Fig. 10 Photograph showing the transient response of the quasistatically crushed square
tube with simple Mode I imperfections „load diameter of 17 mm…
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the subsequent development of lobes. However, the presence of
“high” and “low” peaks of different magnitudes associated with
lobe formation is observed. The mean crush load is 32.4 kN.

Not all the combined loading tests deform progressively. It is
observed that numerous specimens start buckling progressively
before showing signs of collapsing in either the Euler mode or
askew, for example, specimens S079 and S029 shown in Fig. 16.
The instability in the folding mechanism is the result of the asym-
metric response to the blast loads despite the same blast loading
condition. One side of specimen S079 caps while the other side of
the tube is at the onset of capping. Upon buckling, the dome
formed from the onset of capping folds into the cap causing the
instability. The difference in the maximum deflection of the domes
in specimen S029 is 0.65 mm. Whilst this difference in maximum
deflection seems small the combined effect with its location and
final deformed shape may have caused the skew lobe formation.

In cases where the imperfections are in the form of circular
cut-outs and simple Mode I, lobe formation is initiated at the
imperfections. In the cases of rebound and capping imperfections,
the tube collapses in such a way that the dome first touches each
other and compresses before the first lobe is formed at either
above or below the dome induced by the blasts.

Figure 17 compares the deformed shape of 50 mm square tubes
with and without imperfections that have been crushed quasistati-
cally. All the tests are carried out at the same cross-head speed of
15 mm /min. The crushed as-received tube has the same number
of lobes as the tube with circular cut-outs. Both tubes are crushed
in symmetric mode. The tube with simple Mode I domes �non-
touching “dome”� has a similar crush shape to the tube with cap-
ping imperfections. The initial lobe �in the middle of the tube� of

the tube with capping imperfections is larger than the simple
Mode I dome tube. Skewed lobe formation is observed in the tube
with capping imperfections as a result of the nonsymmetric im-
perfection. In contrast, the tube with the rebounded dome col-
lapses symmetrically at the top and bottom of the tube. However,
in the rebounded region of the tube, one side of the tube is ob-
served to collapse outward while the other side collapses inward.

2.2.3 Mean Crushing Load. The total energy absorbed by the
structure can be estimated by the product of the mean crushing
load and the total crushed distance. It is therefore essential that the
mean crushing load is not significantly reduced by the introduc-
tion of imperfections. The better energy absorber will have the
higher mean crushing load �and the lower ultimate buckling load�
over the same crushing distance.

Figure 18 compares the mean crushing load of the different
tubes crushed quasistatically. There is no significant variation in
the mean crushing force between the tubes with induced imper-
fection �average mean forces is shown by the dotted line in Fig.
18�. The tube with oval cap imperfections that are nominally
16 mm in diameter has the lowest mean crushing load and the
“as-received” tube, the highest. The mean crush load of the tube
with circular cut-outs is less than those of the tubes with blast-
induced imperfections by a magnitude of less than 1.6 kN �about
5% difference�. In view of experimental scatter it is considered
that the difference in magnitude is not high enough to draw any
conclusions.

Fig. 11 Typical axial force-displacement graph for the quasis-
tatically crushed square tubes with simple Mode I imperfec-
tions „load diameter of 17 mm…

Fig. 12 Photograph showing the transient response of the quasistatically crushed square
tube with rebound dome imperfections

Fig. 13 Typical axial force-displacement graph for the crushed
square tube with rebound dome imperfections
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2.2.4 Ultimate Buckling Load. There are numerous theoretical
calculations that enable the assessment of the energy absorbing
capability of any structural design, which prohibit excessive dam-
age in an impact event. In a crashworthiness application, while the
duration of the impact and mean crushing load can be below the
life-changing injury criteria threshold, the ultimate buckling load
is often not the case. For better energy absorbers, it is ideal to
have the ultimate buckling load below the injury threshold. Figure
19 compares the ultimate buckling load of the different tubes
crushed quasistatically. There is a significant drop in the ultimate
buckling load with the introduction of geometric imperfections, as
expected. The tube with oval caps �nominal diameter of 16 mm�

has the lowest ultimate buckling load. The tube with rebound
imperfections has a lower ultimate buckling load than the tube
with circular caps �nominal diameter of 11.5 mm�.

2.2.5 Load Efficiency, eL. All the quasistatic tests are carried
out until the tubes are crushed to the same distance, and hence
have the same geometric efficiency as the tubes also having the
same initial length. It is more meaningful, therefore, to evaluate
the load efficiency �force efficiency� of each type of tube. The
load efficiency, a measure of load fluctuations that occur during
crushing, of the different tubes crushed quasistatically is shown in
Fig. 20. High load efficiency denotes a low crushing force fluc-
tuation, suggesting that the difference in the ultimate peak load
and the mean crush force is not high. A high load efficiency thus
is preferable as it suggests a constant deceleration of the impactor.
The tubes with blast-induced imperfections, particularly those
with oval caps or rebound domes, exhibit a high load efficiency.
The tube with no imperfections has the lowest load efficiency.

2.3 Dynamic Axial Loading of Tubes. The test rig used for
the dynamic impact testing is a 7 m high drop tester. The drop
tester is located within the blast chamber to allow multiple loading
conditions such as blast and axial impact loads.

The support arrangement �anvil� for the test specimens consists
of two steel blocks of mass 430 kg each on the laboratory floor.
The test specimens are clamped at the lower end by means of a
clamping rig that is bolted to the top of one of the steel blocks by
means of four bolts, as shown in Fig. 21. The clamping rig secures
the bottom 50 mm of the specimens. To ensure a central impact,
the striker and the anvil are aligned in such a way that the center
of the striker matches the center bore hole of the anvil. The mass
of the trolley can be varied. Prior to testing, the trolley is loaded

Fig. 14 Photograph showing the transient response of the quasistatically crushed square
tube with capping imperfections „load diameter of 17 mm…

Fig. 15 Typical axial force-displacement graph of the quasis-
tatically crushed square tube with capping imperfections „load
diameter of 17 mm…

Fig. 16 Photographs showing the Euler buckling postprogressive collapse due to the skew
lobe formation
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with the required drop mass and raised to the desired drop height.
The trolley is released by a pneumatic piston and drops onto the
free top edge of the tube under gravitational force.

Results from the dynamic axial loading tests are shown in Table
4 for the as-received tubes and in Tables 5–8 for tubes with in-
duced imperfections. Figure 22 summarizes the results shown in
Tables 3–8 by means of a graph of the crushed distance against
the drop energy. Tubes with imperfections generally have a higher
crushed distance than as-received tubes, shown by the trend line,
for the same drop energy. Tubes that collapse in the unstable
mode, as shown in Figure 23, are excluded in the tables of results.
It should be noted that no experimental data measurement, for
instance displacement, velocity, and acceleration history, is cap-
tured for the drop tests because the instrumentations required are
expensive and unavailable. A qualitative analysis of the results is
performed and compared with the quasistatic test results.

2.3.1 Simple Mode I Imperfection. Figure 24 shows the final
buckled shape of three crushed tubes with different preblast im-
perfections. The two blast loads on opposite sides of the tube prior

to the dynamic drop induces two simple Mode I imperfections.
Figure 24�a� shows the final shape of an as-received tube crushed
by a drop mass of 210 kg from a drop height of 5 m. Figures
24�b� and 24�c� show the final shape of two square tubes that are
initially blast loaded with 3 g of explosives with load diameters of

Fig. 17 Photograph showing square tubes with and without
imperfections crushed quasistatically

Fig. 18 Mean crush load of geometrically “perfect” and “im-
perfect” tubes crushed quasistatically

Fig. 19 Ultimate peak load of geometrically perfect and imper-
fect tubes crushed quasistatically

Fig. 20 Load efficiency of geometrically perfect and imperfect
tubes crushed quasistatically

Fig. 21 Photograph of the dynamic axial crush setup
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12.5 mm and 25 mm �equivalent to 5.8 Ns�, respectively, before
being axially crushed by a drop mass of 210 kg from a 4 m drop
height. The difference in the crushed distance between tube �b�
and the as-received tube �a� is insignificant despite the different
drop heights hence suggesting that tube �b� is crushed with a

lower mean force. Similar observation is made between tube �b�
and tube �c�. The bigger load diameter provided a dent over a
bigger area �highlighted� making tube �c� a better energy absorber
than tube �b�. In the case of �b� and �c�, the formation of the first
lobe is accentuated by the imperfections causing the opposite

Table 4 Dynamic crush test results for as-received square tubes

Specimen
Width
�mm�

Thickness
�mm�

Drop
mass
�kg�

Drop
height

�m�

Calculated

Measured
crushed
distance

�mm�

Geometric
effeciency

�%�

Impact
velocity

�m/�

Drop
energy

�kJ�

S016 50 1.5 210.0 3.00 7.67 6.18 127.8 42.60
S014 50 1.5 210.0 5.00 9.90 10.30 235.5 78.50
S015 50 1.5 210.0 10.00 14.01 20.60 271.2 90.40
S022 50 1.5 214.0 1.00 4.43 2.10 39.1 13.04
S023 50 1.5 214.0 2.00 6.26 4.20 102.2 34.08
S024 50 1.5 214.0 3.00 7.67 6.30 110.8 36.92
S018 50 1.5 214.0 3.00 7.67 6.30 121.8 40.61
M001 50 1.5 265.3 2.19 6.55 5.70 116.6 38.87
M002 50 1.5 265.3 3.47 8.25 9.03 123.5 41.17
S060 50 1.5 265.3 3.47 8.25 9.02 133.2 44.40
S065 50 1.5 265.3 3.47 8.25 9.03 139.2 46.41
S064 50 1.5 265.3 3.49 8.28 9.09 143.7 47.90
M003 50 1.5 265.3 3.52 8.31 9.16 144.1 48.03
S062 50 1.5 265.3 3.52 8.31 9.17 144.2 48.08
S061 50 1.5 265.3 3.56 8.36 9.27 116.8 38.93
M004 50 1.5 265.3 4.21 9.09 10.96 175.2 58.40
M005 50 1.5 328.6 2.00 6.26 6.45 135.6 45.20
M009 50 1.5 328.6 3.00 7.67 9.66 182.2 60.73
M010 50 1.5 328.6 3.00 7.67 9.67 174.8 58.27
M016 50 1.5 328.6 3.00 7.67 9.67 176.8 58.93
M007 50 1.5 328.6 3.02 7.70 9.74 176.5 58.83
M008 50 1.5 328.6 3.05 7.74 9.83 187.5 62.50
M011 50 1.5 328.6 3.20 7.92 10.32 200.7 66.90
Q023 50 1.5 328.6 3.27 8.00 10.52 238.2 79.40
S082 50 1.5 328.6 2.51 7.01 8.08 190.5 63.51
M006 50 1.5 328.6 3.50 8.29 11.30 196.3 65.43
M012 50 1.5 328.6 3.50 8.29 11.29 200.8 66.93
M013 50 1.5 328.6 3.50 8.29 11.30 178.2 59.40
M014 50 1.5 328.6 3.51 8.30 11.31 196.5 65.49
M015 50 1.5 328.6 3.83 8.67 12.35 221.1 73.69
Q024 50 1.5 328.6 4.39 9.28 14.14 248.9 82.96
D006 50 1.5 329.8 3.26 8.00 10.56 220.1 73.36
D007 50 1.5 329.8 3.26 8.00 10.55 242.1 80.70
D009 50 1.5 329.8 3.26 8.00 10.55 239.5 79.83
D011 50 1.5 329.8 3.50 8.29 11.32 246.4 82.14
D013 50 1.5 329.8 3.50 8.28 11.32 245.1 81.69
D015 50 1.5 329.8 4.00 8.86 12.94 251.5 83.85

Table 5 Dynamic crush test results for square tubes with circular cut-outs imperfections

Specimen
Width
�mm�

Thickness
�mm�

Nominal
hole

diameter
�mm�

Drop
mass
�kg�

Drop
height

�m�

Calculated

Crushed
distance

�mm�

Geometric
efficiency

�%�

Impact
velocity

�m/s�

Drop
energy

�kJ�

D005 50 1.5 11.5 329.8 3.264 8.00 10.52 231.26 75.93
Q021 50 1.5 12.5 328.6 3.262 8.00 10.54 227.79 75.85
D003 50 1.5 12.5 329.8 3.262 8.00 10.56 231.47 72.72
D012 50 1.5 12.5 329.8 3.502 8.29 10.55 238.57 77.16
D017 50 1.5 12.5 329.8 3.751 8.58 10.56 242.60 77.09
D001 50 1.5 17 329.8 3.258 8.00 10.55 227.56 78.14
D016 50 1.5 17 329.8 3.504 8.29 10.55 236.12 72.57
D010 50 1.5 17.3 329.8 3.262 8.00 11.33 217.71 79.52
D008 50 1.5 25 329.8 3.262 8.00 11.32 234.42 77.43
D002 50 1.5 25 329.8 3.263 8.00 11.34 218.17 78.71
D014 50 1.5 25 329.8 3.498 8.28 12.14 232.30 80.87
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sides of the tubes to touch. More contact between the opposite
sides of the tube is visible for the specimen subjected to the bigger
load diameter. In all cases, the tubes crush progressively, which is
favorable to energy absorption.

The final buckling shape of the three tubes with blast-induced
imperfections is shown in Fig. 25. The tube has different imper-
fections caused by different masses of explosives 17 mm in load
diameter. The masses of the explosives used are 3.0 g, 3.5 g, and
4.5 g �equivalent to 5.8 N s, 6.7 Ns and 8.6 Ns� to induce simple
Mode I imperfections that are 17.1 mm, 20.8 mm, and 22 mm in
depth, respectively. An impact energy of 10.5 kJ �329 kg mass
dropped from 3.26 m� is applied to each of these tubes. All three
tubes crush progressively with a larger first lobe formed in the
middle of the tube �at the location of the dome peak�. Specimen
S085, which has a dish dome with a depth less than 20 mm,
exhibits a larger crush distance than the two tubes that have dish
domes over 20 mm deep. The domes in specimen S085 are ob-
served to rebound on the dynamic axial load to form two small
outward facing dimples. The opposing domes in the other two

tubes do not rebound onto each other but coalesce, causing an
asymmetric collapse of the midsection of the tube. After the
domes contact, specimen S030 is observed to collapse askew
while specimen S074 collapses progressively.

2.3.2 Rebound Imperfections. The final buckling shapes ob-
tained from the dynamic axial response of a tube that is crushed
by a drop mass of 210 kg from a 4 m drop height �impact velocity
8.9 m /s� is shown in Fig. 26. The square tube is induced with
blast imperfections using 3.5 g of explosives at a load diameter of
25 mm �equivalent to 6.7 Ns� to generate two rebound domes
prior to the axial loading. When subjected to the dynamic axial
load, the tube crushes symmetrically in a similar mode. The im-
perfections bounce outward to form two dimple shapes while
symmetric lobes are progressively formed at both ends of the
tubes.

2.3.3 Capping Imperfections. The final collapse shapes of
square tubes with blast-induced imperfections crushed by a

Table 6 Dynamic crush test results for tubes with simple Mode I imperfections

Specimen
Width
�mm�

Thickness
�mm�

ME
�g�

Load
diameter

�mm�

Nominal
maximum
deflection

�mm�

Drop
mass
�kg�

Drop
height

�m�

Calculated

Measured
crushed
distance

�mm�

Geometrice
efficiency

�%�

Impact
velocity

�m/s�

Drop
energy

�kJ�

S002 50 1.5 2 12.5 9.34 210.0 5.00 9.90 10.30 233.4 77.80
S003 50 1.5 2 17 11.32 210.0 5.00 9.90 10.30 235.4 78.47
S011 50 1.5 3 17 17.94 210.0 5.00 9.90 10.30 238.6 79.53
S085 50 1.5 3 17 17.08 328.6 3.27 8.01 10.53 244.3 81.43
S009 50 1.5 3.5 17 21.34 210.0 4.00 8.86 8.24 185.5 61.83
S030 50 1.5 3.5 17 20.77 328.6 3.26 8.00 10.52 200.4 66.80
S074 50 1.5 4.5 17 21.99 328.6 3.26 8.00 10.52 236.6 78.88
S004 50 1.5 2 25 11.70 210.0 5.00 9.90 10.30 243.7 81.23
S012 50 1.5 3 25 19.97 210.0 4.00 8.86 8.24 233.8 77.93

S026A 50 1.5 3 25 21.79 328.6 3.27 8.01 10.53 245.2 81.73

Table 7 Dynamic crush test results for tubes with rebound imperfections

Specimen
Width
�mm�

Thickness
�mm�

ME
�g�

Load
diameter

�mm�

Nominal
rebound

depth
�mm�

Drop
mass
�kg�

Drop
height

�m�

Calculated

Measured
crushed
distance

�mm�

Geometric
efficiency

�%�

Impact
velocity

�m/s�

Drop
energy

�kJ�

S008 50 1.5 3.5 25 22.16 210.0 4.00 8.86 8.24 200.0 66.67
S091 50 1.5 3.5 25 23.1 329.8 3.26 7.99 10.54 230.0 76.65

Table 8 Dynamic crush test results for tubes with blast-induced cap imperfections

Specimen
Width
�mm�

Thickness
�mm�

ME
�g�

Load
diameter

�mm�

Nominal
cap

diameter
�mm�

Drop
mass

Drop
height

�m�

Calculated

Measured
crushed
distance

�mm�
Geometric
efficiency

Impact
velocity

�m/s�

Drop
energy

�kJ�

S010 50 1.5 4 17 11.1 210.0 4.00 8.86 8.24 201.7 67.24
S031 50 1.5 4 17 11.3 328.6 3.26 8.00 10.52 213.1 71.03
S013 50 1.5 4.25 17 11.2 210.0 4.00 8.86 8.24 203.0 67.67
S042 50 1.5 4.5 17 11.7 328.6 3.26 8.00 10.51 227.0 75.67
S043A 50 1.5 4.5 17 11.7 328.6 3.26 8.00 10.51 246.8 82.27
S044 50 1.5 4.5 17 11.5 328.6 3.27 8.00 10.53 226.0 75.33
S075 50 1.5 4.75 17 11.5 328.6 3.26 8.00 10.52 232.1 77.38
S086 50 1.5 4.75 17 11.9 328.6 3.26 8.00 10.52 239.2 79.72
S087 50 1.5 4.5 25 18.4 328.6 3.27 8.00 10.52 233.2 77.72
S089 50 1.5 4.5 25 18.0 328.6 3.27 8.00 10.53 247.8 82.58
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329 kg mass dropped from a height of 3.26 m �impact velocity
8 m /s� are shown in Fig. 27. Prior to the dynamic axial load the
square tube is subjected to two 17 mm localized blast loads of
4.5 g of PE4, equivalent impulses of 8.6 Ns each, to create two
capping imperfections. Both specimens crush progressively which
is very favorable to energy absorption with the same number of
lobes that are similar in shape but different in size. The asymmet-
ric collapse of the tube can be attributed to the asymmetric re-
sponse to the blast loads.

2.3.4 Asymmetric Imperfections. Figure 28 shows the re-
sponse of specimens S075 and S086 to two blast loads of 4.75 g
of PE4 �equivalent to 9.1 Ns� followed a dynamic impact load of
329 kg dropped from 3.26 m. In both cases, the tube response
after the blast is asymmetric with one side of the tube caps while
the other side thins in the center �onset of capping� despite the
same blast loading conditions. The size of the first lobe formed
during the collapse of the specimen is bigger than the subsequent
lobes. While the tube crushes progressively it buckles askew as a
result of the initial asymmetric geometry caused by the blast
loads. The number of lobes in both specimens is the same. There
is, however, a difference in lobe size, which results in a 3% dif-
ference in crushed distance.

Figure 29 shows a photo of a series of drop tests carried out on
50 mm square tubes with induced geometric imperfections in-
duced by circular cut-outs and 17 mm blast loads and without
imperfections. The circular cut-outs are similar in size to that of
the capping imperfections. All the tubes are subjected to having a
329 kg mass dropped from a nominal height of 3.26 m �impact

Fig. 22 Graph showing the crushed distance versus the drop
energy for tubes with and without imperfections

Fig. 23 Photograph showing tubes collapsing in unstable
mode „bolts included for photographic purposes…

Fig. 24 Photographs showing dynamic axially crushed 50 mm square as-received and
“blast-induced imperfections” tubes with drop mass of 210 kg „mass of explosive: 3 g…

Fig. 25 Photograph showing dynamic axially crushed 50 mm square tubes, exposed to the
explosive load 17 mm in diameter, from 3.26 m drop height with a drop mass of 329 kg
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velocity 8 m /s�. The tube with no imperfection is crushed
238.2 mm while the tube with the circular cut-outs is crushed
227.8 mm. There is an increase in crushed distance when imper-
fections created by 3 g of explosives �equivalent to 5.8 Ns� are
induced. However, for tubes with imperfections induced by a
mass of explosive greater than 3 g the crushed distance is less
than the crushed distance of the as-received tube. Nonetheless, an
increase in crushed distance with an increasing mass of explosive
is observed for tubes with induced imperfections created by 3.5 g
of explosives �equivalent impulse of 6.7 Ns� or higher. With the
exception of tube S085, all the other tubes with explosively in-
duced imperfections deform with skew lobe formation. The tube

with the circular cut-outs is crushed by the same amount as the
tube with imperfections caused by 4.5 g of explosives �equivalent
to 8.6 Ns�.

2.3.5 Geometric Efficiency, eG. One way to assess the crash-
worthiness of the structures is to investigate its geometric effi-
ciency. The geometric efficiency is the ratio of crushed distance to
original length. Figure 30 shows the geometric efficiency of as-
received tubes and tubes with different imperfections. In this case,
all the tubes are subjected to the same impact load, 329 kg
dropped from 3.26 m, to achieve an impact velocity of 8 m /s. For
the same initial impact energy, the higher crushed distance or
geometric efficiency suggests a lower mean crushed force. From
Fig. 30, the tube with the simple Mode I imperfections �17.1 mm�
in depth has the highest geometric efficiency as a result of the
weakened structure. The tubes with rebound and capping imper-
fections are deformed to such an extent that collapse causes the
opposite sides to contact each other and offer extra resistive force
to the impact load. As a result the latter has a lower crushed
distance, thus a lower geometric efficiency. It should be noted that
the geometric efficiency will vary depending on the initial impact
energy.

3 Discussion of Results
Figure 31 shows the final crush of quasistatic and dynamic

loading of the tube with and without imperfections. All quasistatic
tests are conducted at a nominal strain rate of 1.65�10−3 s−1 and
stopped when the crushed distance reaches 205 mm. �The nominal
strain rate is calculated using the equations suggested by Jones
�30�.� For the dynamic tests, the tube is crushed until the drop
mass reaches equilibrium. The tube is subjected to an axial load
resulting from a 329 kg mass dropped from a height of 3.26 m
�impact velocity of 8 m /s� to obtain a nominal strain rate of
52.8 s−1.

The quasistatic and dynamic tests can both be monitored in a
controllable manner to achieve a desired final crush distance.
While the quasistatic test can be stopped at any point during the
crushing process, the dynamic test can be controlled by the load-
ing conditions, drop height, and mass to crush by a specific
amount. In Fig. 31, the global crush shape of the tubes subjected
to either quasistatic or dynamic loads are compared. No signifi-
cant difference is observed for the tube with similar imperfections.

Fig. 26 Photographs showing the dynamic axially crushed blasted loaded 50 mm tube with a
drop mass of 210 kg from a 4 m drop height „mass of explosive: 3.5 g, load diameter: 25 mm,
crushed distance: 200 mm…

Fig. 27 Photographs showing the dynamic axial crushed
50 mm the square tubes with blast imperfection caused by a
4.5 g of PE4 at a load diameter of 17 mm „drop mass: 329 kg,
nominal drop height: 3.26 m…
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The transient response of the tube suggests from quasistatic tests
and finite element simulations �see Part II� suggest that in both
cases the crush is initiated at the imperfections.

4 Concluding Remarks
The introduction of the blast-induced imperfections at mid-

points of the extruded tube affects its energy absorption charac-
teristics but does not change its buckling mode �unless the blast-
induced imperfections are asymmetrical�. Irrespective of the size
of the blast, as investigated, the magnitude of the first peak load is
reduced. However, the mean crush force, crushed distance, and
effective crushed distance are very dependent on the imperfec-
tions created by the blast loads. In all cases, the tubes with sym-
metric blast-induced imperfections buckle progressively.

Fig. 29 Photographs showing dynamic axial crushed 50 mm square tubes with and without
imperfections caused by an explosive of load diameter of 17 mm with a drop mass of 329 kg
from a nominal height of 3.26 m „imperfections in tube Q021 are drilled holes…

Fig. 30 Geometric efficiency of tubes with and without imper-
fections crushed dynamically

Fig. 28 Photographs showing the dynamic axial crushed 50 mm square tubes with blast imperfec-
tion caused by 4.75 g of PE4 at a load diameter of 17 mm „drop mass: 329 kg, nominal drop height:
3.26 m…

051308-14 / Vol. 76, SEPTEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A tube with simple Mode I imperfections will start to collapse
in such a way that the dome will try to touch each other, forming
a lobe at the imperfection, before progressive lobes are formed
alternatively at the impact end and clamp end of the tube. In the
cases of rebound and capping imperfections, the domes are al-
ready in contact with each other. Progressive lobes are formed
alternatively at both ends of the tube. If no more lobes can be
developed and there is still more energy to absorb, the midsection
of the tube tends to buckle in an Euler mode. The tubes with
capping imperfections have, however, a higher tendency to chang-
ing buckling mode due to the different “cap” sizes and the loca-
tion of the cap.
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Nomenclature
eG � geometric efficiency
eL � load efficiency

I � measured impulse
ME � mass of explosive

P � pressure
Pm � mean crush load
Pult � ultimate peak force
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The Crushing Characteristics of
Square Tubes With Blast-Induced
Imperfections—Part II: Numerical
Simulations
This two-part paper presents the results of experimental and numerical work on the
crushing characteristics of square tubes, with blast-induced imperfections, subjected to
axial load. In Part I, the experimental studies are presented. The approach in the studies
involves creating imperfections on opposite sides at midlength of a square tube by means
of localized blast loads to create three types of imperfections: nontouching domes, re-
bound domes, and capped domes. These imperfections change the geometry and the
material properties in the midsection of the tubes and hence affect the crushing charac-
teristics. While the blast-induced imperfections enhance the energy absorption charac-
teristics of the tubes they also affect the lobe formation process. In Part II, the finite
element package ABAQUS/EXPLICIT v6.5–6 is used to construct a 1

2 symmetry model by
means of shell and continuum elements to simulate the tube response to the localized
blast loads followed by dynamic axial loading in the form of a rigid mass impacting at a
specified initial velocity. The hydrodynamic code AUTODYN is used to characterize the
localized blast pressure time and spatial history. The predictions show satisfactory cor-
relation with experiments for both crushed shapes and crushed distance.
�DOI: 10.1115/1.3005980�

Keywords: square tubes, imperfections, blast load, energy absorption

1 Introduction
Theoretical models of the response of tubular structures sub-

jected to axial loading far outnumber experimental studies. Simple
closed-form solutions can often provide a rapid and sufficiently
accurate estimate of, for example, crushing distance and mean
crushing load. According to Karagiozova and Jones �1�, no clear
classification on the influence of various parameters, such as ge-
ometries, loading conditions, and material properties, which cause
the development of different dynamic buckling phenomena, has
been made despite the numerous studies on both the static and
dynamic responses of tubes. Finite element analysis has been
widely applied to analyze the crushing of tubes, enabling param-
eters and boundary conditions, which are not accessible experi-
mentally or analytically to be investigated. Consequently, this nu-
merical tool has become an ideal instrument to gain a better
understanding of the failure mechanism of tubular structures sub-
jected to compressive loading conditions.

The different tubular response characteristics, such as peak
load, fold length, axial compression, and energy absorption, have
been studied using the numerous finite element techniques avail-
able. A few examples of the different finite element codes used to
investigate these characteristics include the work of Langseth
et al. �2,3�, Otubushin �4�, and Marsolek and Reimerdes �5� who
used LS-DYNA. Abah et al. �6� and Markiewicz et al. �7� used
PAM-CRASH. Miyazaki et al. �8� used the finite element package
MARC K6.2. Nannucci et al. �9� and Karagiozova and co-worker
�10–13� used ABAQUS. In most of the studies, an explicit integra-
tion scheme was used. However, the “implicit” finite element code
MARC has also been used by Mamalis et al. �14� to simulate the

crush behavior of cylindrical thin-walled composite tubes under
static and dynamic axial compressions.

Karagiozova et al. �1,10,12,13,15–18�, among others
�3,4,7,19–21�, have used numerical simulation to clarify the me-
chanics behavior and role of elastic and plastic stress waves and to
explore the influence of the material properties, boundary condi-
tions, and loading techniques on the energy absorbed and the
buckling modes of axially crushed thin-walled structures. The in-
fluence of the material models, with respect to temperature effects
at high strain rates, on the prediction of the response of aluminum
alloy circular and square tubes was discussed by Karagiozova
et al. �22�.

Jensen et al. �23� and Karagiozova and Alves �24,25� have con-
ducted numerous finite element studies to explore the transition
between dynamic progressive buckling and global bending of
thin-walled tubes, investigating the effects of geometry, material
yield stress, strain hardening, and strain rate sensitivity.

The use of finite element techniques has also been extended to
optimize different parameters with a view to obtain the ideal en-
ergy absorbers, with the aim to maximizing the specific energy
absorption. Chiandussi and Avalle �26� and Nagel and Thambirat-
nam �27� optimized tapered tubular steel components. Other algo-
rithms are carried out by Lust �28�, Yamazaki and Han �29�, and
Avalle and co-workers �30,31� by applying structural optimization
techniques using the response surface methodology. New types of
trigger and multicell profiles with specific energy absorption 1.9
times larger than conventional square tubes in terms of energy
absorbed and weight efficiency were developed by Kim �32�.
Theobald and Nurick �33,34� numerically investigated the re-
sponse of a novel lightweight panel, which comprised mild steel
outer plates with thin-walled tubes as the core material to blast
loads. The parametric study examined the effects and interaction
between design variables �tube position, thickness and aspect ra-
tio, and top plate thickness� in three different tube layouts.
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This paper presents the numerical simulation of square tubes
with blast-induced imperfections subjected to dynamic axial load.
With the lack of instrumentation in the experiments, the motiva-
tion for the numerical simulations was to obtain crushing axial
force-displacement characteristics for square tubes with blast-
induced imperfections. The numerical simulation is divided into
two parts. First, an investigation using the hydrodynamic code
AUTODYN to model the explosive interaction with a plane struc-
ture. The results obtained from the AUTODYN simulations are then
applied to the explicit dynamic finite element program ABAQUS/

EXPLICIT v6.5–6 to simulate the large inelastic deformation and
tearing mode of the square tube due to the blast loads. The buck-
ling mode of the square tube due to the dynamic impact load is
also modeled using ABAQUS/EXPLICIT v6.5–6. The numerical pre-
dictions are compared with the experimental results reported in
Part I.

2 Finite Element Formulation
The numerical analysis is carried out using the general-purpose

finite element code ABAQUS/EXPLICIT v6.5–6, which incorporates
nonlinear geometry, strain rate sensitivity, and temperature effects.

2.1 Model Geometry. A half-symmetric model of the tube is
generated in such a way to capture a solution that would approach
the exact solution within “reasonable” computational expenses.
Four-noded shell elements �S4R� are used to model the tube as
they have been proven, for example, by Langseth et al. �3� and
Karagiozova �10–12�, to provide results that correlate well with
experiments for the crushing of tubes when subjected to dynamic
and static axial loads. The shell elements, nonetheless, fall short to
capture material data through the tube thickness.

An eight-noded, linear brick, 3D continuum element with re-
duced integration and hourglass control �C3D8R� as used by Wie-
hahn et al. �35,36� and Nurick and co-workers �37,38� is thus
applied on two midsections of the square tube to capture not only
the deformation of the tube as a result of the blast load but also the

shear band failure through the tube thickness when “capping” oc-
curs. The 3D continuum elements are developed in such a way
that a finer mesh size is obtained in areas where capping is more
like to occur and a coarser mesh is obtained to match the shell
elements of the tube where the shell and 3D continuum elements
are “tied” together at the nodes. Six layers of 3D continuum ele-
ments are used.

An assembly of the different elements used to model the tube
with its assigned elements and boundary conditions is shown in
Fig. 1. At the interface, the continuum elements are tied to the
shell elements at the nodal points. Symmetric conditions are ap-
plied in the Y-Z plane. The lower part of the tube, which is
clamped in the experiment, is fixed in the translational degree of
freedom but is allowed to rotate.

2.2 Material Properties. Standard uniaxial tensile test speci-
mens extracted from the mild steel tube profile, as shown in Fig.
2, are tested at different strain rates to give a static yield stress of
304 MPa. For an isotropic material, mild steel in the case of this
study, the nominal stress-strain data obtained from uniaxial tests
are converted to true stress and logarithmic plastic strain using

�true = �nom�1 + �nom� �1�

�ln
pl = ln�1 + �nom� −

�true

E
�2�

where �true is the true stress, �nom is the nominal stress, �nom is the
nominal strain, �ln

pl is the logarithmic plastic strain, and E is
Young’s modulus.

As a result of necking, uniaxial stress-strain data obtained from
tensile tests for mild steel are not valid beyond the necking point
because of its large postnecking deformation. Bridgman �39� de-
veloped an analytical expression in order to obtain the effective
stress and strain in the necked region. Bridgman’s analysis uses
geometric dimensions of the necked region to relate effective
stress and strain to the measured values. Mirone �40� suggested a

Fig. 1 1
2 tube finite element „FE… model showing boundary conditions and assigned element type
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similar analysis that achieves an error level less than half that
obtainable with the Bridgman method. This method referred to as
a MLR� function is dependent on the current value of the loga-
rithmic strain and strain at necking initiation, which is a material
constant.

The MLR� function is, thus, used to transform the true stress
obtained from the tensile tests into an estimation of the equivalent
stress averaged onto the neck cross section. The MLR� function is
given by

MLR���eq,�N� = 1 – 0.6058��eq − �N�2 + 0.6317��eq − �N�3

− 0.2107��eq − �N�4 �3�

where �eq is the current value of the logarithmic strain and �N is
the strain at necking initiation.

Typical result of uncorrected and corrected true stress versus
logarithmic strain is shown in Fig. 3. Strain rate effects on the
material properties are incorporated using the Cowper–Symonds
relationship given by

�y
1

�0
= 1 + � �̇

�̇0
�1/�

�4�

where �y
1 is the dynamic yield stress, �0 is the static yield stress,

�̇ is the strain rate, �̇0 and � are material constants, and �̇0
=844 s−1 and �=2.207 are the values for common South African
mild steel obtained by Marais et al. �41� from split-Hopkinson bar
tests.

Temperature effects are incorporated using the variations of
Young’s modulus and yield stress as functions of temperature as
proposed by Masui et al. �42� and applied by Nurick and co-
workers �37,38�. The model is assumed to be adiabatic due to the
very short duration of the blast ��2 �s� and the subsequent de-
formation ��300 �s� allowing very little heat to be transferred
from the structure. It is assumed during adiabatic analyses that
90% of the plastic work is converted to heat �this is the default
recommended by the ABAQUS/EXPLICIT user manual�. A specific
heat capacity of 450 J /kg °C is used in the model. The von
Mises yield criterion with isotropic hardening is the constitutive
model used. Moreover it is assumed that the density and the spe-
cific heat of the material do not change with temperature.

2.3 Modeling the Blast Load. The blast load, generated by
the use of plastic explosive in the experiments, is modeled as a
pressure applied to the exposed area of the square tube over a
given time in the finite element model. The time is fixed by the
explosive properties and geometry, but the pressure distribution
and area over which it acts are complex. The modeling of the blast
load is, however, simplified by certain assumptions.

The duration of the pressure distribution, tblast, is calculated
from the burn time of the explosive and the radius of the disk of
explosive.

tblast =
R0

Vb
�5�

where R0 is the load radius, and Vb is the burn speed of the
explosive, assumed to be 8200 m/s �43�.

While Grobbelaar and Nurick �44� showed that an equation of
state for the explosive can be incorporated into the model to simu-
late the pressure wave, it is also possible to approximate the pres-
sure distribution. Within this approximation of the pressure distri-
bution it is assumed that the pressure is applied for the blast
duration, and that the pressure is constant over the area of the
explosive and decays exponentially over the rest of the plate as
reported by Bimha �45�.

The pressure conditions are given as

P�r� = P0 for 0 � r � rexplosive and 0 � t � tblast

P�r� = P0e−k�r−rexplosive� for rexplosive � r � rplate and

0 � t � tblast �6�

where P�r� is the pressure as a function of the radial position r, P0
is the pressure magnitude, and k is the exponential decay constant
derived from empirical data.

Similar pressure-time loading characteristics were reported by
Balden and Nurick �46� when the blast load is simulated using the
hydrodynamic code AUTODYN 2D. However, unlike Bimha �45�,
Balden and Nurick �46� found that the constant pressure was dis-
tributed over a “burn radius” that is slightly smaller than the load
radius. It was also found that the pressure decayed to a radius,
referred to as rp, which is less than the plate radius. In this paper
a similar procedure to Balden and Nurick �46� is adopted.

Two Eulerian spaces to represent air and explosive interacting
with a Lagrangian mesh occupied by the deformable plate, as
shown in Fig. 4, are assembled as axisymmetric AUTODYN model
to obtain the pressure-time loading characteristics. The air media
is assumed to behave as an ideal gas. The Jones–Wilkins–Lee
equation of state �JWL EOS� is specified for the C4/PE4 �plastic�
explosive �as used in the experiments� material as defined in the
AUTODYN material library. The response of the mild steel plate is
of little significance in these simulations and is therefore simu-
lated using the shock equation of state and Johnson–Cook strength
models. These models are readily available in the AUTODYN ex-
tensive material library. Axisymmetry simulations for different
load diameters are carried out to obtain the pressure distribution as
a function of radius of the plate.

Fig. 2 Tensile test specimen extraction from the mild steel
extrusion

Fig. 3 Graph of true stress versus logarithmic strain
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During the simulation, the pressure history on the mild steel
plate is recorded at 1 mm intervals along the plate radius. The
pressure at discrete points along the plate radius increases sharply
and thereafter decays in a more gradual fashion. The resulting plot
of the normalized maximum pressure at the gauge points along the
plate radius from the explosive center shows a pressure profile
that resembles a constant pulse coinciding with the burn radius
and subsequently decays in the assumed exponential manner and
is described by Eq. �7�, which is similar to Bimha’s �45� approxi-
mation. This blast pressure, P�r�, is applied to the opposite sides
of the square tube to simulate the blast load.

P�r� = P0 for 0 � r � rb and 0 � t � tblast

�7�
P�r� = P0e−k�r−rb� for rb � r � rp and 0 � t � tblast

The burn radius, rb, the exponential decay constant, k, and the
zero pressure radius, rp, are extracted from AUTODYN simulations.
rb, rp, and k are found to be a function of the explosive radius and
not mass. Table 1 shows the different values obtained for the
different load diameters used.

The blast pressure distributed over the entire exposed surface
related to the measured impulse is given by

I = 2��
t=0

tblast�
r=0

rp

P�r,t�rdrdt �8�

where I is the measured blast impulse from experiment, and
P�r , t� is the axisymmetrical blast pressure as a function of radius,
r, and time, t. The integration limits in Eq. �6� are for radius r
=0 to r=rp and for the time interval t=0 to t= tblast. The magni-
tude of the peak pressure, P0, is solved by integrating and rear-
ranging Eq. �6� and is given by

P0 =
I

�tblast�rb
2 + 2	� rb

k
+

1

k2
� − � rp

k
+

1

k2
�ek�rb−rp�
� �9�

2.4 Loading Conditions. To model the response to blast
loading, ABAQUS/EXPLICIT employs a multiple step concept to
which the model is exposed. The model is first exposed to the
blast pressure loaded followed by an unloading phase during
which the tube deforms elastically as a result of inertia effects. To

simulate the combined loading conditions, the finite element
model is run in three different sequential steps:

�1� blast loading �apply blast pressure load�
�2� inertia effect due to blast loading �inertial response of tube�
�3� dynamic axial load �crushing of tube�

In the model, the rigid mass is set up in such a way to provide
a space gap between the rigid body representing the mass and the
strike end of the tube. The gap is set depending on the striking
velocity to prevent the drop mass from contacting the tube while
the tube is being subjected to the first two loading steps represent-
ing the two opposite blast loads.

2.5 Contacts. In order to simulate the interactions between
the tube walls and the rigid drop mass, contact in the form of
“self-contact” is defined for the whole model to allow both the
inside and outside walls of the tubes to interact with each other
and the drop mass with the tube.

Self-contact is generally available in the context of surface
folding and touching itself in ABAQUS/EXPLICIT. Contact elements
are internally generated for each node on the contact surfaces to
allow contact of all surface segments. A penalty is used to avoid
overconstraining that will occur, for example, if the meshes on
both sides of the interface match exactly since a node is simulta-
neously a master and a slave. The penalty contact algorithm has a
weaker enforcement of contact constraints but allows for treat-
ment of more general types of contact. The algorithm, neverthe-
less, conserves momentum between the contacting bodies.

3 Results of the Finite Element Simulations

3.1 Blast Loading. The transient response of the tubes to the
two localized blast loads is illustrated in Fig. 5. The midsections
of the tube are deformed creating the different blast-induced im-
perfections depending on the loading conditions. Figure 6 shows
the results of finite element simulation and experiment for three
types of imperfections. Good correlation is obtained for all types
of imperfections. For the cases, of simple Mode I �Fig. 6�a�� and
rebound dome �Fig. 6�b�� imperfections, the simulations predict
similar deformed shapes and final maximum deflection. A range of
temperature and strain values is used to categorize the tearing
mode of failure as a result of the severe temperature rise in the
region of fracture. A band of high temperatures as a result of
greater adiabatic heating due to the increased strain rate and strain
is formed in the region of fracture. In this regard, elements with
temperatures above 500°C and strain exceeding 140% throughout
the wall thickness are considered as torn. Similar criteria were
used by Nurick and co-workers �37,38�. Figure 6�c� shows good
agreement with the experiment for capping imperfections. Be-
cause of the symmetry conditions applied in the model, the pre-
diction fails to show any asymmetric responses observed in the
experiments.

The numerical simulations also failed to predict capping imper-
fections for the 25 mm load diameter as observed in the experi-
ments. Rebound imperfections are predicted in these cases.

3.2 Combined Loading

3.2.1 Simple Mode I Imperfections. The final buckling shape
for a 50 mm square tube subjected to a dynamic axial load of 210
kg dropped from 5 m �impact velocity 9.9 m/s� is compared with
that obtained from numerical predictions in Fig. 7. Prior to the
axial impact, the tube is induced with imperfections created by
two 25 mm localized blast loads of 2 g of PE4 �equivalent to
3.9 Ns�. The overall buckling shape is well described by the finite
element prediction, showing the same number of lobes in the two
cases shown. In Fig. 7�a� the model is simulated with a clamping
area and in Fig. 7�b� the clamping area is omitted as in the ex-

Fig. 4 Axisymmetric schematic of the localized blast of PE4
explosive, using AUTODYN 2D

Table 1 Values of rb, rp, and k obtained for different load
diameters

Load diameter �mm� rb �mm� rp �mm� k

17 6 18 328
25 11 23 307
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periment. The predicted result shows a crushed distance within
5% of the experiments, hence showing good correlation. Rebound
of the opposing domes is predicted but not observed
experimentally.

Figure 8 shows the buckling progression of the tube with
simple Mode I imperfections. The impacting mass causes the tube
to first collapse in such a way that opposing Mode I domes touch
each other and then rebound before the first lobe is formed below
the imperfection �relative to the impact end—top� at point A. Sub-
sequently two lobes are formed above the Mode I dome followed
by a fourth lobe beneath the first one. The impact event lasts for
51 ms.

3.2.2 Rebound Imperfections. The experimentally and numeri-
cally predicted buckling shapes are shown in Fig. 9 for a square
tube subjected first to two opposing 3 g of PE4 blast �impulse per
blast: 5.8 Ns� followed by the axial impact of 329 kg rigid mass
at 8 m/s. The numerical prediction shows the bulging outwards of
the blast-induced imperfection �referred to as a “rebound dome”�
and two sets of lobes at either side, in agreement with the de-

formed shape observed experimentally. The numerical prediction
shows good correlation for crushed distance subsequent to axial
loading but overpredicts the size of the rebound domes.

The transient predicted collapse mechanism of the square tube,
shown in Fig. 9, is shown in Fig. 10. Prior to the dynamic axial
load, two blast-induced imperfections form on opposite sides of
the tube as a result of the applied impulsive loading. The first lobe
is formed at point A, below the rebound dome �relative to the
impact position�. The second and third lobes are formed from
point B, above the rebound dome at the impacted end. A fourth
lobe is then formed beneath the first. Thereafter, the tube crushed
in the middle region around the imperfections between points A
and B. The rebound dome folds and increases in maximum de-
flection between 30 ms and 65 ms. The impact event is completed
in 65 ms.

The comparison in final buckling shapes obtained from numeri-
cal predictions with the axial dynamic loading of a 50 mm square
tube with a mass of 210 kg dropped from a height of 4 m �impact
velocity of 8.9 m/s� is shown in Fig. 11. The square tube is in-

Fig. 5 Transient response of the tube to two localized blast loads „for all types of imperfections…

Fig. 6 Comparison of tube response to two localized blast loads „for all types of imperfections…
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duced with blast imperfections using 3.5 g of explosive at a load
diameter of 25 mm �equivalent to 6.7 Ns� to generate two re-
bound domes prior to the axial loading. The numerical model
predicts a rebound deflection of 23.22 mm, which compares fa-
vorably to the 22.16 mm obtained from the experiment. The over-
all crush behavior is well described by the numerical model irre-

spective of the inclusion or exclusion of clamping area as
illustrated in Figs. 9�a� and 9�b� for both crushed shape and
crushed distance.

The predicted transient collapse response is similar to that pre-
dicted for the 17 mm load diameter and to that observed during
quasistatic loading of a tube with comparable imperfections.

Fig. 7 Predicted collapse mode of a 50 mm square tube with simple Mode I imperfections created by two 25
mm blast loads „drop mass: 210 kg; drop height: 5 m…

Fig. 8 Collapse sequences of a 50 mm square tube with simple Mode I imperfections created by two 25 mm
blast loads „drop mass: 210 kg; drop height: 5 m…
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3.2.3 Capping Imperfections. The predicted folded shape of a
square tube with blast-induced imperfections impacted by a 329
kg rigid mass at an impact velocity of 8 m/s �drop height of 3.27
m� is shown in Fig. 12. Prior to the dynamic axial load the square
tube is subjected to two localized blast loads equivalent to 7.7 Ns
impulses each at a load diameter of 17 mm, to induce capping
imperfections. In the experiments, the tube is subjected to the
same dynamic load but the capping imperfections are induced by
two localized blast loads of 4.5 g of PE, each equal to 8.6 Ns at a
load diameter of 25 mm. It should be noted that modeling capping
imperfections followed by dynamic axial crushing is computation-
ally very expensive despite element deletion for the solver in that

particular version of ABAQUS/EXPLICIT. Only the elements that
meet the failure criteria �T�500°C and PEEQ�140%� are de-
leted. Within the cap there are elements that do not meet the
failure criteria traveling away from the tube preventing the solu-
tion convergence within reasonable timeframe. Regardless of the
blast loading parameters, the numerical simulation shows good
correlation for the crushed shape and crushed distance for capping
imperfections.

Figure 13 shows the predicted collapse mechanism of the
square tube. The transient collapse response is similar to that ob-
served for quasistatic loading of a tube with comparable imper-
fections. The tube first collapses in such a way that the capped

Fig. 9 Comparison of predicted collapse mode of a 50 mm square tube with induced rebound imperfections
created by two 17 mm blast loads „drop mass: 329 kg; drop height: 3.27 m…

Fig. 10 Collapse sequences of a 50 mm square tube with induced rebound imperfections created by two 17
mm blast loads „drop mass: 329 kg; drop height: 3.27 m…
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domes touch each other �as observed for simple Mode I imperfec-
tions� before the first lobe is developed below the capped dome at
point A �relative to the impacted end�. Subsequent progressive
lobes are formed above and below the imperfection in alternate
order. The impact event is completed in 63 ms.

Additional simulation predicting folded shape of tubes with
capping induced imperfections, in which Cowper–Symond con-
stants used to describe the strain rate sensitivity are �̇0=40.4 s−1

and �=5 �47�, is shown Fig. 14. The tube is impacted by a 329 kg
rigid mass at an impact velocity of 8 m/s �drop height of 3.27 m�.
Prior to the dynamic axial load the square tube is subjected to two
localized blast loads of 4.5 g of PE4, equivalent impulses of
8.6 Ns each, to create capping imperfections. The numerical
simulation is equivalent to experiments S042 and S044, with the
experimental buckling shapes shown in Fig. 14�a�. The finite ele-
ment simulation, however, predicts buckled shape �shown in Fig.
14�c�� similar to that observed in experiment S086 for a slightly
higher charge mass of 4.75 g PE4, shown in Fig. 14�b�. The slight
asymmetry is due to the element deletion process within the nu-
merical solution, but it correlates favorably with “real” material
failure. The predicted crushed distance is 225.1 mm compared
with 239.2 mm obtained from experiments.

4 The Influence of Asymmetric Blast-Induced Imper-
fections

From experiments it is observed that several tubes displayed
asymmetric response to blast loading despite applying the same
loading conditions. This is most likely due to very small differ-
ences in the explosive charge location �relative to the tube walls�
or minimal differences in the tube thickness and cross section
caused by the extrusion process or small differences in applied
impulse. Furthermore the mass of explosive at the same loading
conditions does not result in identical impulse �experimental
variation�. Three examples of tubes exhibiting asymmetric re-
sponse are shown in Fig. 15.

The results from the finite element model, hitherto, have shown
symmetric response to the blast and axial loadings because any
small variations in the loading or tube geometry that are found in
practice are not modeled. In an attempt to model the asymmetric
tube response three tubes are simulated and subjected to different
localized blast loading conditions on the opposing sides. On the
one side, the decaying pressure function �blast load 1� as de-
scribed in Sec. 2.3 is applied. On the opposing side, a rectangular
pressure pulse �blast load 2� is applied over the explosive radius.

Fig. 11 Final collapse mode of a 50 mm square tube with rebound induced imperfections created by two 25
mm blast loads „drop mass: 210 kg; drop height: 4 m…

Fig. 12 Final collapse mode of a 50 mm square tube with capping induced imperfections „drop mass: 329 kg;
drop height: 3.27 m…
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Fig. 13 Collapse sequences of a 50 mm square tube with induced capping imperfections „drop mass: 329 kg;
drop height: 3.27 m…

Fig. 14 Comparison of predicted collapse mode of a 50 mm square tube with induced capping imperfections
created by two 17 mm blast loads „drop mass: 329 kg; drop height: 3.27 m…
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The pulse is applied over a duration equal to the explosive burn
time. For the impulse applied using the rectangular pulse �blast
load 2�, the magnitude of the applied pressure is calculated using

P0 =
I

Atblast
�10�

where I is the measured blast impulse, A is the explosive area, and
tblast is the burn time of explosive.

Figure 16 shows the different loading conditions, asymmetric
localized blast loads followed by dynamic axial load. It is, how-
ever, difficult to compare experiments with finite element predic-
tions in these asymmetric cases because the response of the tubes
in the experiments results from the combination of blast and im-
pact. The purpose of the finite element simulations in this section
is to illustrate the sensitivity of the tube response to small varia-
tions in the blast loading conditions.

Finite element analyses for three tubes with asymmetric blast
loading conditions are performed and their predicted final buck-

ling shapes are shown in Fig. 17. It can be seen by comparing the
predicted buckling shapes with the tubes shown in Fig. 15 that
they have similar characteristics.

The prediction, shown in Fig. 17�a�, has the same applied im-
pulse for both blast loads but different spatial distributions. The
asymmetric response shown in Figs. 17�b� and 17�c� is carried out
using different spatial distributions and impulse magnitudes. In
both cases, blast load 1, the decaying pressure function, has an
impulse of 7 Ns. The pressure magnitude in blast load 2, the
rectangular pulse, is slightly varied to give small differences in
impulse. In Fig. 17�b�, the rectangular pulse has an applied im-
pulse of 6.5 Ns and in Fig. 17�c�, the applied impulse is 7.4 Ns.
This sensitivity is important in cases where it could lead to Euler
buckling mode, which is highly inefficient as an energy absorber.

5 The Influence of Impulse and Load Diameter

5.1 Blast-Induced Imperfection Type. The influence of load
diameter and impulse on the imperfection geometry is investi-

Fig. 15 Crushed 50 mm tubes with asymmetric blast response

Fig. 16 1
2 tube FE model showing different loading conditions
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gated numerically. Two load diameters �17 mm and 25 mm� and
different impulses per load diameter are investigated. Some typi-
cal predicted imperfections induced by blast load of different
charge diameters are shown in Fig. 18. It should be noted that
capping imperfection is excluded in this discussion because of its
expensive computational time.

For both load diameters, tube deforms in the midsection �150
mm in length� with the maximum deflection of the tube side in-
creases with increasing impulse, as expected. The maximum de-
flection is similar in magnitude for the same impulse indifferent to
load diameter, as shown in Fig. 18 and Table 2. For a 50 mm tube,
the maximum deflection is limited to 23.5 mm �accounting for
tube thickness� without contact occurring between the opposite
sides. From Figs. 18�a�, 18�b�, 18�e�, and 18�f�, it is observed that
for impulses of 3.7 Ns and 4.7 Ns, the tube walls do not contact
and simple Mode I domes with nominal maximum deflection of
15.2 mm and 19.5 mm are induced for both load diameters, re-
spectively. At impulse of 5.7 Ns, the 17 mm load diameter charge
induces simple Mode I domes that are just touching �Fig. 18�c��.
The 25 mm load diameter charge produces domes that have just
contacted and rebounded with a maximum deflection of 23.4 mm
after elastic recovery �Fig. 18�g��.The “peak” of the dome is
slightly flattened after contact and rebound. Rebound imperfec-
tions are predicted for both load diameters at impulse of 6.7 Ns,

as shown in Fig. 18�d� and 18�h�. Upon contact and rebound,
outward facing dimples are predicted at the center of the imper-
fections. The size of the dimple increases with increasing
impulses.

The predicted deformed profile of the central longitudinal axis
of the tubes for different load charges and diameters is shown in
Fig. 19. The 25 mm load diameter exhibits profiles that are
“squarer” than the 17 mm load diameter, as expected because of
the larger loaded area. It is anticipated that the squarer profiles
would result in larger contact area upon dynamic loading and
would thus affect the crush response. While no significant defor-
mation is observed in the bottom and top ends of the tubes be-
tween the 50–120 mm and 280–350 mm marks, there exists some
structural “imperfections” as a result of the changes in eigenmode
of the tube. These changes in eigenmodes are believed to affect
the crushing characteristics of the tube and the location of the first
lobe is formed. The influence of eigenmode is not investigated in
this paper.

5.2 Predicted Collapse Mode. Numerical simulations of dy-
namic axial loading of tubes with blast-induced imperfections are
performed to investigate the influence of impulse and load diam-
eter on the crush behavior of the tubes. The tubes are subjected to
a 329 kg rigid mass impacted at 8 m/s. The crushing performance

Fig. 17 Predicted collapse mode of a 50 mm square tube with blast-induced asymmetric
imperfections
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is given in Table 3 in terms of ultimate peak load, mean crush
force, and crushed distance. The predicted buckling shapes are
shown in Fig. 20 with the axial force-displacement curves shown
in Fig. 21.

All the tubes exhibit similar final collapse shapes, with the
same number of lobes. The geometrically “as-received” tube
shows uniform lobe formation, as expected. The tubes with the
blast-induced imperfections develop lobes on either side of the
deformed geometrical modifications.

From Table 3, it is observed that the simulations with the 25
mm blast load generally predict higher mean crush force and
lower crushed distance than the 17 mm blast load. The ultimate
peak load, for the 17 mm blast load diameter, appears to have
reached a maximum when the domes are just touching at impulse
of 5.7 Ns and decreases for higher load. For the 25 mm blast load
diameter, the ultimate peak load increases with increasing blast

load for the range of impulses investigated. The mean crushed
force appears to slightly increase and the crushed distance appears
to decrease with increasing blast load for both blast load
diameters.

From Fig. 21, it is observed that the ultimate peak loads for
tubes with blast-induced imperfections are less than for the “as-
received” tube. The tubes with nontouching simple Mode I domes
�impulse of 4.7 Ns� have generally lower crushed forces but
higher crushed distance than the tubes with rebound imperfections
�impulse of 6.7 Ns�. This can be attributed to the fact that the
nontouching simple Mode I domes offer less resistance force than
the tubes with rebound imperfections to crushing. The larger

Fig. 18 Predicted blast-induced imperfections for a 50 mm tube at various impulses

Table 2 Predicted maximum deflection of blast-induced im-
perfections for a 50 mm tube at various impulses

Deflection of imperfections �mm�

Impulse �N s� 3.7 4.7 5.7 6.7 7.7
Load diameter �mm�

17 15.1 19.2 23.0 21.9 19.2
25 15.3 19.8 23.4 21.8 —

Fig. 19 Predicted deformation profile along central longitudi-
nal axis of a 50 mm tube at various impulses

Table 3 Summary of predicted results for dynamic axial load
of 50 mm square tubes with imperfections induced by different
blast loads

Ultimate peak load, Pult �kN�

Impulse �N s� 0 3.7 4.7 5.7 6.7 7.7
Load diameter �mm�

— 139.9
17 92.9 83.9 119.6 108.6 100.6
25 95.0 98.3 102.1 104.9

Mean crush force, Pm �kN�

Impulse �N s� 0 3.7 4.7 5.7 6.7 7.7
Load diameter �mm�

— 44.0
17 41.7 41.7 44.1 44.3 44.4
25 42.0 43.7 44.1 45.7

Crush distance, 	 �mm�

Impulse �N s� 0 3.7 4.7 5.7 6.7 7.7
Load diameter �mm�

— 237.9
17 252 253.8 241.6 238.0 236.8
25 253.5 244.8 241.3 231.3
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crushed distance, however, makes the tube denser as the folds are
compressed to their maximum and crushing takes place in a stiffer
region where the imperfections are located. This results in unde-
sirably high crushed peak force, as highlighted by the ellipse in
Fig. 21.

6 Conclusions
The introduction of the blast-induced imperfections at mid-

points of the extruded tube affects the final crushed shape. The
different types of blast-induced imperfections affect the crushing

mechanism of the tubes differently. The numerical predictions of
axial loading of square tubes with blast-induced imperfections
have been presented. Good correlations are obtained for overall
buckling shape and crushed distance.

While the numerical simulations, presented in this paper, pre-
dict the tube response to two localized blast loads forming the
imperfections followed by the dynamic axial load, in the experi-
ments, these two loading conditions are not carried out almost
simultaneously. Further experimental investigation is planned to
carry out the two loading conditions simultaneously with a view
to investigate the effect of material property changes with the help
of numerical simulations.
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Nomenclature
�̇ 
 strain rate

�̇0 
 strain rate material constant
�eq 
 current value of logarithmic strain
�N 
 strain at necking initiation
� 
 material constant

�0 
 static yield stress
�y

1 
 dynamic yield stress
I 
 measured impulse
k 
 decay constant

Fig. 20 Predicted buckling shapes for dynamic axially loaded 50 mm tubes with imperfections induced by
different blast loads

Fig. 21 Predicted axial force-displacement curves for some
dynamic axial load of 50 mm square tubes with imperfections
induced by different blast loads
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P 
 pressure
Pm 
 mean crush load
Pult 
 ultimate peak force
R0 
 load radius

tblast 
 duration of pressure distribution
Vb 
 burn speed of explosive
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This paper deals with systems governed by the Mathieu–Duffing
equation, with a time-dependent coefficient of the linear term and
a constant, not necessarily small coefficient of the cubic term. This
coefficient can be positive or negative. The method of strained
parameters applied to a linear system governed by the Mathieu
equation is extended to a strongly nonlinear system. As a result,
the curves corresponding to the parameter values at which peri-
odic solutions exist are obtained. It is shown that they strongly
depend on the value of the coefficient of nonlinearity and the
initial conditions. The corresponding parameter planes are plot-
ted. Numerical integrations are carried out to confirm the analyti-
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1 Introduction
The first recorded parametric behavior was that of Faraday in

1831 �1�, when he noted that surface waves in a fluid-filled cyl-
inder under vertical excitation exhibited twice the period of the
excitation itself. Since then, parametric phenomena have been rec-
ognized in many problems of physics and engineering �see, for
example, Refs. �2–9��.

The simplest mathematical model of a parametrically excited
system is the Mathieu equation

ẍ + �� + 2� cos 2t�x = 0 �1�

where � and � are constants. The majority of studies devoted to
this equation has been aimed at defining the regions of stable
�bounded� and unstable �unbounded� motions in a parameter
plane, i.e., in the ��-plane. These regions are separated by the
transition curves along which the zero-solution is periodic and the
expressions for which are independent of the initial conditions.

The Mathieu equation with cubic nonlinearity �the Mathieu–
Duffing equation�,

ẍ + �� + 2� cos 2t�x + cx3 = 0 �2�

where c is a constant, has recently been of interest to researchers
due to its numerous applications. The method of multiple scales
�10� was used to obtain the conditions for the existence of non-
trivial steady-state amplitudes and phases and for investigating
their stability. Rand �11� showed that the nonlinearity causes bi-
furcations to occur as the transition curves corresponding to the

linear Mathieu equation are crossed. Namely, the question of the
stability of the trivial solution x=0 is the same both for the weakly
nonlinear equation �2� and for the linear Mathieu equation �1�.
However, for the nonlinear equation, as � changes through the
tongue formed by the transition curves emanating from �� ,��
= �1,0�, the trivial solution x=0 changes its stability and simulta-
neously subharmonic motions appear. Esmailzadeh and Nakhaie-
Jazar �12� stated the necessary and sufficient conditions for the
existence of at least one periodic solution of the Mathieu–Duffing
equation. Zounes and Rand �13� derived analytical expressions for
the resonance bands that are associated with some subharmonic
periodic solutions.

In this work, the Mathieu–Duffing equation �2� is studied with
a view to obtain the values of the parameters of the system which
lead to the periodic solutions corresponding to different frequen-
cies for the case when the magnitude of the parametric forcing � is
assumed to be small, while the coefficient of the cubic term c can
have an arbitrary sign: negative �softening nonlinearity� or posi-
tive �hardening nonlinearity� and it is not necessarily small. This
assumption implies that the coefficient c is not of the same or of a
smaller order with respect to the parameter �. The method of
strained parameters �10� is adapted in such a way that the use of
elliptic functions is introduced. The graphical presentation of the
expressions for the parameters of the system yielding the periodic
solutions generates the parameter plane, the configuration of
which is the main task of this study.

2 The Elliptic Method of Strained Parameters
In accordance with the method of strained parameters, the per-

turbation expansions of the coordinate x and the parameter � are
introduced as follows:

x�t,�� = x0�t� + �x1�t� + O��2� �3�

� = �0 + ��1 + O��2� �4�
Substituting Eqs. �3� and �4� into Eq. �2� and equating coefficients
of the same powers of �, one obtains

ẍ0 + �0x0 + cx0
3 = 0 �5�

ẍ1 + �0x1 + 3cx0
2x1 = − �1x0 − 2x0 cos 2t �6�

The solution of Eq. �5� can be assumed as

x0 = A0ep��0t + �0,k� �7�

where ep��0t+�0 ,k� denotes a convenient Jacobian elliptic func-
tion, A0 and �0 are constants dependent on the initial conditions,
�0 is a frequency, and k is an elliptic modulus �14,15�. There are
two possible types of the solution �7�, and accordingly, two pos-
sible values of the parameters A0, �0, �0, and k. In Table 1, the
form of the zero-solutions �7� and the quantities �0 and k are
given, depending on which type of the equation they refer to
�softening or hardening nonlinearities�. It should be noted that for

the initial condition prescribed as x�0�=X0 , ẋ�0�= Ẋ0, one has

x0�0�=X0 , ẋ0�0�= Ẋ0 , x1�0�= ẋ1�0�=0; the constants A0 and �0
can be calculated accordingly.

Thus, Eq. �6� turns to a new equation with a time-varying co-
efficient next to the linear term as follows:

ẍ1 + ��0 + 3cA0
2ep2��0t + �0,k0��x1 = − �1A0ep��0t + �0,k�

− 2A0ep��0t + �0,k�cos 2t �8�

The second coefficient of the linear term x1 in Eq. �8� is time-
varying, which means that this equation represents a modified
Mathieu equation. In order to solve it, the product cA0

2 is assumed
to be small, and a new small parameter �1 is introduced �Table 2�.
Hence, the standard approach of the method of strained param-
eters is to be used with the following series expansions for the
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coordinate and parameter �1 with respect to the small parameter
�1:

x1�t,�1� = x10�t� + �1x11�t� + O��2� �9�

�1 = �10 + �1�11 + O��2� �10�
Furthermore, it can be seen that Eq. �8� contains both elliptic and
circular functions. The application of the standard method of
strained parameters requires re-expressing the elliptic functions by
using the additional formulas for Jacobian elliptic functions �14�,
which are given in Table 2. Besides, in this table, the approxima-
tions of these expressions based on the fact that the quantity cA0

2 is
small �which means that k is small� are included.

Substituting Eqs. �9� and �10� and the appropriate approxima-
tions from Table 2 into Eq. �8�, and separating the terms with the
same order of the small parameter �1, the following equations,
presented in the general form, are obtained:

ẍ10 + ��S0,C0,D0�x10 = F1�S0,C0,D0,A0,�10�cos��t

+ F2�S0,C0,D0,A0,�10�sin��t + NST

�11�

ẍ11 + ��S0,C0,D0�x11 = G1�S0,C0,D0,A0,�11�cos��t

+ G2�S0,C0,D0,A0,�11�sin��t + nst

�12�

where NST and nst stand for nonsecular terms, while �, F1, F2,
G1, and G2 denote the functions of the variables shown. On the
basis of the requirement of the nonsecular terms in Eq. �11�, the
component �10 is to be found. Then, integrating Eq. �11�, the
solution for x10 can be obtained. Similarly, eliminating secular
terms from Eq. �12�, the component �11 is to be calculated. The
values of �0, �10, and �11 depend on the frequency �see Table 1�,
which relates to the period of the solution �7�. Since the funda-
mental Jacobian elliptic functions have the period 4K�k�, where
K�k� is the complete elliptic integral of the first kind �14�, two
cases will be analyzed separately: the solution �7� is of the period
4K�k�, the frequency is �0=1; and the solution �7� is of the period
2K�k�, the frequency is �0=2. The details of the whole procedure

will be omitted for brevity and just the results will be given �the
details can be found in Ref. �16��.

2.1 Softening Nonlinearity: c�0. The parameter values
yielding the solution of the period 4K�k� are given by

� = 1 +
�1

6
− �, � = 1 +

�1

6
+ ��1 −

�1

8�1 −
�1

3 �� �13�

The parameter values, which lead to the solution of the period
2K�k� are defined by

� = 4 +
�1

6
−

��1

24 − 2�1
, � = 4 +

�1

6
+

��1

24 − 2�1
�14�

2.2 Hardening Nonlinearity: c�0. The expressions for the
parameter values for which the solutions of the period 4K�k� exist
are

� = 1 −
2

3
�1 − �, � = 1 −

2

3
�1 + ��1 +

�1�3 − �1�
4�3 + �1 − �1

2�	 �15�

while those leading to the solutions of the period 2K�k� read as
follows:

� = 4 −
2

3
�1 −

12��1

12 + �1
, � = 4 −

2

3
�1 +

��1�12 − �1�
144 + 12�1 − 3�1

2

�16�

3 Numerical Results and Discussion
In the special case when �1=0, i.e., c=0 the expressions given

by Eqs. �13�–�16� correspond to the expressions for the transition
curves of the Mathieu equation �10�, which are

� = 1 − � + O��2�, � = 1 + � + O��2�, � = 4 + O��2� �17�

When c=0, the elliptic modulus k is equal to zero, as a result of
which the elliptic functions in Table 2 are simplified to the sine
and cosine functions for the softening and hardening types of
nonlinearity, respectively. These solutions of motion along the
curves �17� agree with those given in Ref. �10�.

The transition curves of the Mathieu equation emanate from the
critical points �0=1 and �0=4. However, in the case of the
Mathieu–Duffing equation, the values corresponding to the critical
points, as well as the geometry of the curves along which periodic
solutions exist, change with the values of the parameter of non-
linearity and the initial conditions, i.e., with the value of the quan-
tity �1. Using Eqs. �13�–�16�, the parameter ��-plane for the
Mathieu–Duffing equation is plotted in Fig. 1 for various values
of the quantity �1. For the equation with softening nonlinearity,
the values of the critical points are higher for �1 /6 than the critical
values of the Mathieu equation. Consequently, the curves along
which periodic solutions exist are shifted to the right �Fig. 1�a��.
For the equation with hardening nonlinearity, the critical values
for the Mathieu–Duffing are lower than the critical values of the

Table 1 Solutions of Eq. „5… depending on the sign of the con-
stant c

Type of
nonlinearity Zero-solution Frequency

Elliptic
modulus

Softening
c�0 x0=A0sn��0t+�0 ,k� �0

2 = �0 −
cA0

2

2
k2 =

cA0
2

2��0 −
cA0

2

2 �
Hardening
c�0 x0=A0cn��0t+�0 ,k� �0

2=�0+cA0
2 k2 =

cA0
2

2��0 + cA0
2�

Table 2 Transformation of the solution „7… depending on the sign of the constant c

Type of
nonlinearity

Small
parameter Addition formula Approximation Notation

Softening
c�0 �1=3cA0

2 x0 = A0
sn0C0D0 + cn0dn0S0

1 − k2sn0
2S0

2
x0
A0 sin��0t�C0D0

+cos��0t�S0

sn0�sn��0t ,k�
cn0�cn��0t ,k�

Hardening
c�0 �1 =

3cA0
2

2
x0 = A0

cn0C0 − sn0dn0S0D0

1 − k2sn0
2S0

2
x0
A0 cos��0t�C0

−sin��0t�S0D0

dn0�dn��0t ,k�
S0=sn��0 ,k�
C0=cn��0 ,k�
D0=dn��0 ,k�
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linear Mathieu equation, as a result of which the curves corre-
sponding to periodic solutions are shifted to the left �Fig. 1�b��.

In order to check the validity of the results regarding the peri-
odicity of the response for the particular relationships between the
system parameters, a direct numerical integration of the equation
of motion �2� was done. The numerical simulations were carried
out by using the MATLAB code 45 function for the fixed values of
the parameters �c�=1 and �=0.1. The parameter � was calculated
on the basis of the analytically obtained values defined by Eqs.

�13�–�16�, where the parameter �1 is equal to 0.12 for the soften-
ing nonlinearity and 0.06 for the hardening nonlinearity. Figure 2
shows that the numerically computed response corresponding to
the points P1-P4 labeled in Fig. 1 is periodic, as it has been pre-
dicted analytically.

4 Conclusions
The Mathieu–Duffing equation has been treated by using the

method of strained parameters and assuming the zero-solution in
the form of Jacobian elliptic functions. The parameter values for
which the periodic solutions with period 2K�k� and 4K�k� exist,
have been obtained. In the special case when the value of the
parameter of nonlinearity c is chosen to be zero, these curves in
the first approximation are equivalent to the transient curves of the
linear Mathieu equation. In comparison to the location of the tran-
sition curves, the curves along which the periodic solutions of the
nonlinear equation appear are shifted to the right for softening
nonlinearity c�0 and to the left for hardening nonlinearity c�0.
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Fig. 2 Phase projections for c=1 and ε=0.1: „a… point P1, „b…
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